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CHAPTER 2 

The Probability Calculus 

2.0 The Axioms 

The rules governing the assignment of probabilities, together with 
all the deductive consequences of those rules, are collectively 
called the probability calculus. Formally, the rules, or axioms, of 
the probability calculus assign non-negative real numbers (the 
probabilities), from among those between 0 and 1 inclusive, to a 
class of possible states of affairs, where these are represented under 
some appropriate manner of description. For the time being all that 
we shall assume about this class of representations, called the 
domain of discourse, or domain for short, is that it is closed under 
conjoining any two items with 'and', them with 'or', and 
negating any single item with 'not'. Thus if a and b represent pos-
sible states of affairs, so do respectively 'a and b', symbolised a & 
b; 'a or b', symbolised a v b; and 'not-a', symbolised -a. 

We shall allow for a certain amount of redundancy in the way 
the members of this possibility structure are characterised, just as 
we do in ordinary discourse. For example, '--a' is just another, 
morc complicated, way of saying a, and a and --a are logically 
equivalent. In general, if a and b are logically equivalent repre-
sentations of any possible state we shall symbolise the fact by the 
notation a b. It is useful (actually indispensable in the devel-
opment of the formal theory) to consider as limiting cases those 
possible states of affairs which must necessarily occur, such as 
the state of its either raining or not raining, and those which nec-
essarily cannot occur, such as its simultaneously raining and not 
raining (in a particular place). The symbolism a v -a represents 
a necessary truth, and is itself is called a logical truth, while a & 
-a represents a neccssary falsehood, and is called a logicalfalse-
hood, or contradiction. In what follows, t will be the generic 
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symbol of a logical truth and ..l that of a contradiction. To any 
reader who has had exposure to an elementary logic course these 
concepts and the notation will be familiar as the formal basics of 
a propositional language, and for that reason we shall call these 
items, a, b, c, .. . and the compounds we can form from thcm, 
using the operat ions -, v and &, propositions. Thc ' propositi on ' 
terminology is not idea l, but thcrc is no better general-purpose 
term around to refer to classes of possibl e states of affairs, be they 
localised in spacet ime or larger-scale types of possible world. 

A word to the wise, that is, to those who have at some point 
consultcd textbooks of probability, clcmentary or advanced. 
These tex ts freq uently start off by defining a probabilitl'-c\ystem, 
which is a triple (S, :S, P), where P is a non-negative, real-va lued 
function on which is called a field of subsets of S, where the 
latter is called variously the class oj' elementary events, sample-
space or possibili(v .\pace. That is a fie ld of subsets of S means 
that it contains S itself, and is closed under the set-theoretic oper-
ations of complementation vvith respect to S, union and intersec-
tion . It follows that contains 0, thc cmpty set, since this is the 
complement of S with respect to itse lf. We can relate this to our 
own rather (in fact de liberatcly) informal treatment as follows. 2i 
corresponds to our domain of propositi ons (referring to a class of 
possi ble states of affairs hcre represented by S), with negation rep-
resented by re lative complement, conjunction by intersection, and 
disjunction by union. The only signi f icant difference is that the 
set-theoretic for mali sm is purely extensional: there is no room for 
equival ent yet distinct description s of th e same events in S. Thus, 
for example, S is the singlc extension of all the logically true 
propositions like a v -a, -(a & -a), and so forth), and 0 the sin-
gle extension of all logical falsehood s. By writing t and ..l as 
generic logica l truths and falsehoods wc arc in effect pcrforming 
notationally the same collapsing operation as is achieved by going 
set -theoretica l. 

A word to the very w ise. Sometimes thc probability function 
is said to be defined on a Boolean algebra , or algebra for short. A 
celebratcd mathcmatical result li es bchind thi s terminology, 
namely Stone's Theorem that every Boolean algebra is isomor-
phic to a field of sets. Thus we ean talk of an algebra of scts , 
implicitly referring to the unique algebra isomorphic to the given 
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field. Also, the propositional operations of conjunction and di s-
junction arc often symbolised using the Boolean-algebraic sym-
bols for meet and join, 1\ and v. The reason for this is that if we 
identify logica lly equivalent elements of a propositional language 
we also obtain a Boolean algebra, the so-ca lled Lindenbaum (zlge-
bra of the language. Sometimes, for this reason, people speak of 
an algebra of propositions. Strictly speaki ng, however, the ele-
ments of a propositional language are not isomorphic to a 
Boolean algebra, merely homomorphic, because the mapping is 
only many-one from the propositions to corresponding elements 
of the algebra (all logical truths map to the unique maximal ele-
ment I of the algebra, and all logical falsehoods map to the unique 
least element 0, and in general all equivalent propositions map to 
the same member of the algebra; the reader might like to check 
that the algebra determined by one propos itional variable has four 
members, that generated by two has sixteen, and that generated by 
11 has 2 raised to the power 211 members). 

So much for peripheral technicalities. In what follows we shall 
regard probabilities as defined on domains of propositions closed 
under negat ion, conjunction, and disjunction, with the probability 
function on a particu lar domain denoted by P, and P(a) read as 'the 
probability of a ' . Thi s brings us to the question of what P(a) actu-
ally means. A remarkable fact about the probability calculus, dis-
covered two hundred yea rs ago, is that such sta tements can be 
endowed with two quite distinct types of meaning. One refers to 
the way the world is structured, and in particul ar the way it appears 
to endow certain types of stochastic (chance-like or random) 
experiment with a disposition to deliver outcomes in ways which 
betray marked large-scale regularities. Herc the probabilities are 
objective, numerical measures of these regularities, evaluated 
empirically by the long-run relative frequencies of the correspon-
ding outcomes. On the alternative interpretation the meaning of 
P(a) is epislemic in character, and indicates something like the 
degree to which it is felt some assumed body of background 
knowl edge renders the truth ofa more or less likely, where a might 
be anything fro m a prediction about the next toss of a particular 
coin to a statement of the theory of General Relativity. These sens-
es of Pray are not entirely unrelated. Knowing the objective prob-
ability of getting heads with a particular coi n should, it seems 
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reasonable to believe, also tell you how likely it is that the next 
toss of the coin wi II yield a head. 

We shall investigate these interpretative issues in more detail 
later. The task now is to get a feel for the formal principles of the 
probability calculus, and in particular see what the fundamental 
postulates are and discover some useful consequences of them. 
The fundamental postulates, known as the probability axioms, are 
just four in number: 

(1) P(a) 0 for all a in the domain of P 

(2) P(t) = I. 

(3) P(a v b) = pray + P(b) if a and b are mutually inconsis-
tent; that is, if a & b ..l. 

(1)- (3) above suffice to generate that part of the probability cal-
culus dealing with so-called absolute or unconditional, probabil-
ities. But a good deal of what follows will be concerned with 
probability functions of two variables, unlike P above which is a 
function of only one. These two-place probability functions are 
called conditional probabilities, and the conditional probability of 
a given b is written P(a / b). There is a systematic connection 
between conditional and unconditional probabilities, however, 
and it is exprcssed in our fourth axiom: 

P(a & b) 
(4) P(a/b) = where P(b) ;z' O. 

P(b) 

Many authors take P(a I b) actually to be defined by (4). We prefer 
to regard (4) as a postulate on a par with (1)- (3). The reason for this 
is that in some interpretations of the calculus, independent mean-
ings are given to conditional and unconditional probabilities, which 
means that in those (4) cannot be true simply by definition. 

2.b Useful Theorems of the Calculus 

The first result states the well-known fact that the probability of a 
proposition and that of its negation sum to I : 
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(5) P(-a) = I - P(a) 

Proof: 

a entails -- a. Hence by (3) P(a v a) = P(a) + P(-a). But by 
(2) P(a v -a) = I, whence (5). 

Next, it is simple to show that contradictions have zero probability: 

(6) P(.l) = O. 

Proof: 

-.l is a logical truth. Hence P(-.l) = 1 and by (5) P(.l) = O. 

Our next result states that equivalent sentences have the same 
probability: 

(7) If a ¢? b then P(a) = P(b) . 

Proof: 

First, note that a v -b is a logical truth if a ¢? b. 
Assume that a ¢? b. Then P(a v -b) = I . Also if a ¢? b then a 

entails -- b so P(a v - h) = P(a) + P(-b). 
But by (5) P(-b) = I - P(h) , whence P(a) = P(h). 

We can now prove the important property of probability func-
tions that they respect the entailment relation; to be precise, the 
probability of any consequence of a is at least as great as that of 
a itself: 

(8) If a entails b then pro) :s; P(b). 

Proof: 

If 0 entails b then [a v (h & -a)] ¢? b. Hence by (7) P(b) = 
pra v (b & -a)}. But a entails -(b & -a) and so pra v (b & 
-a)] = pray + P(b &-a). Hence P(h) = P(a) + P(b &-a). But 
by (1) P(b & -a) 2: 0, and so P(a) :s; P(h). 

From (8) it follows that probabilities are numbers between 0 and 
I inclusive: 
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(9) ° $ P(a) $ I, for all a in the domain of P. 

Proof: 

CHAPTER 2 

By axiom I , P(a) 0, and since a entails t, where t is a logi-
cal truth, we have by (8) that P(a) P(t) = I. 

We shall now demonstrate the general (finite) additivity condition: 

(10) Supposc a i entails -ai' where I $ i <j $ n. Then P(a I v 
... va,) = P((lI) + ... + P(a n ). 

Proof: 

P(a l v ... va,, ) = P[(a l v ... van I) va), assuming that n > 
L if not the result is obviously trivial. But since a. entails -a, 

I I 
for all i j. it follows that (a 1 v . .. v an 1) entails -a l1, and 
hence P(a 1 v ... va,) = P(a I v ... v a" I) + P(a,). Now sim-
ply repeat this for the remaining ai' .. . ,a l1 I and we have (10) . 
(This is essentially a proof by mathematical induction.) 

Corol/arv. If (II v . . . v a is a logical truth, and (I. entails -a . 
• 1/ [I 

for i then I = P(a,) + ... + P(a,). . 

Our next result is often called the 'theorem of total probability ' . 

(11) If P((li v ... va) = I, and a . entails -a . for i j. then 
11 I .I 

P(b) = P(b & a l ) + ... + P(b & a,). for any proposition 
b. 

Proof: 

h entails (b & (1 , ) v ... v (b & an) v [b & -(a, v ... va,)}. 
Furthermore, all the disjuncts on the right-hand side arc mutu-
ally exclusive. Let a = (/1 V ... v a". Hence by (10) we have that 
P(h) = P(b & a l ) + ... + P(b & a,) + P(h & -a). But P(h & 
-0) $ P(-a). by (8), and P(-a) = I - P(a) = 1 - 1 = 0. Hence 
P(b & -a) = 0 and (11) follows. 

Coro/fan) I. Ifa l v ... v a is a logrical truth, and a. entails -a . 
1/ I J 

for i ;z!j, then P(b) = 'LP(b & (Ii)' 

Corollary 2. P(h) = P(b I e) Pre) + P(h I -c) P(-c), for any c 
such that pre) > 0. 
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Another useful consequence of (11) is the following: 

(12) If P(a j v ... va) = I and a. entails for i '" J', and 
II I .I . 

P(a) > 0, then for any b, P(b) = P(b I aj)P(a j ) + ... + 
P(b I a) P(a,). 

Proof: 

A direct application of (4) to (11). 

(12) itself can be generalized to: 

IfP(a j v ... va) = I and P(a & a) = ° for all i =J', and P(a) 
II 'I I' . f 

> 0, then for any b, P(b) = P(bl a j ) P(a j) + ... + P(b I 
a,)P(an). 

We shall now develop some of the important properties of the 
function P(a I 17). We start by letting b be some fixed proposition 
such that P(b) > ° and defining the function Q(a) of one variable 
to be equal to P(a I b), for all a. 

Now define 'a is a logical truth modulo b' simply to mean '17 
entails a' (for then a and t are equivalent given b), and 'a and e 
are exclusive modulo b' to mean '17 & a entails -e'; then 

(13) Q(a) = 1 if a is a logical truth modulo b; and the corol-
lary 

(14) Q(h) = I; 

(15) Q(a v c) = Q(a) + Q(e) , if a and e are exclusive modulo 
b. 

Now let Q'(a) = P(a I c), where pre) > 0; in other words, Q' is 
obtained from P by fixing e as the conditioning statement, just as 
Q was obtained by fixing h. Since Q and Q' are probability func-
tions on the same domain, we shall assume that axiom 4 also 

Q(a & d) 
holds for them: that is, Q(a I d) = ,where Q(d) > 0, and 

Q(d) 
similarly for Q '. We can now state an interesting and important 
invariance result: 
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(16) Q(a I c) = Q' (a I b). 

Proof: 

Q(a & c) P(a & b I c) 
Q(a & c) = . Q(c) P(c I b) 

P(a&blc) Q'(a&b) 
---- = Q(a I b). 

P(b I c) Q' (b) 

CHAPTER 2 

P(a & b & c) 

P(b & c) 

Corollary. Q(a I c) = P(a I b & c) = Q '(a I b). 

(16) and its corollary say that successively conditioning P on b 
and then on c gives the same result as if P were conditioned first 
on c and then on b, and the same result as if P were simultaneously 
conditioned on b & c. 

(17) If h entails e and P(h) > 0 and Pre) < 1, then P(h I e) > 
P(h). 

This is a very easy result to prove (we leave it as an exercise), but it 
is of fundamental importance to the interpretation of the probabili-
ty calculus as a logic of inductive inference. It is for this reason that 
we employ the letters hand e; in the inductive interpretation of 
probability h will be some hypothesis and e some evidence. (17) 
then states that {f"h predicts e then the occurrence ole will, if the 
conditions of" (17) are satisfied, raise the probability C?lh. 

(17) is just one of the results that exhibit the truly inductive 
nature of probabilistic reasoning. It is not the only one, and more 
celebrated are those that go under the name of Bayes :So Theorems. 
These theorems are named after the eighteenth-century English 
clergyman Thomas Bayes. Although Bayes, in a posthumously 
published and justly celebrated Memoir to the Royal Society of 
London (1763), derived the first form of the theorem named after 
him, the second is due to the great French mathematician Laplace. 

Bayes's Theorem (First Form) 

pre I h) P(h) 
(18) P(h I e) = . where P(h) , pre) > O. 
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Proof: 

P(h & e l 
P(h I e) = / 

Pre) 

p re I h) P(h) 
_ ._. __ . - --

Pre) 

Again we use the letters hand e, standing for hypothesis and evi-
dence. This form of Bayes's Theorem states that the probability of 
the hypothes is conditional on the evidence (or the posterior prob-
ability of the hypothesis) is equal to the probability of the data 
conditional on the hypothesis (or the likelihood of the hypothesis) 
times the probability (the so-called prior probability) of the 
hypothesis, all divided by the probability of the data. 

Bayes's Theorem (Second Form) 

(19) i/P(h l V ... v hJ = I 
P(h), Pre) > 0 then 

and h . entails i()r i ;" J' and , J.I'. 

pre I hk) P (hk ) 

P(hk I e) = "LP(e Ih,) P (h) 

Coro /tm:v. If hi v ... V hl/ is a logical truth, then if Pre), P(h) 
> 0 and h enta il s for i or ,', then / . 

pre I hk) P(h i ) 

P(hk I e) = "LP(e I h) , , 

Bayes's Theorem (Third Form) 
P lh) 

(20) P(h 1 e) = P(h) + 
pre 1 h) 

From the point of view of induct ive inference, this is one of 
the most important forms of Bayes 's Theorem. For, since = 

I - P(h). it says that P(h I e) =f{P(h) , pre I -h)) wherefis an in-
\ pre I h) 

creasing function of the prior probability P(h) of h and a decreas-

ing function of the likelihood ratio pre 1 -h) . In other words, for 
pre 1 h) 
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a given value of thc likelihood ratio, the posterior probability of h 
increases with its prior, while for a givcn value of the prior, the 
posterior probabi I ity of h is the greatcr, the less probable e is rel-
ative to than to h. 

2.c Discussion 

Despite their scemingly abstract appearance, implicit in axioms 
is some very interesting, significant and sometimes sur-

prising information, and a good deal of this book will be taken up 
with making it explicit and explaining why it is significant. 

To whet the appctite, consider the following apparently simple 
problem, known as the Harvard Medical School Test (Casscells, 
Schoenberger, and Grayboys 1978), so called because it was given 
as a problem to students and staff at Harvard Medical School, 
whose rcsponses we shall come to shortly. I A diagnostic test for a 
disease, D, has two outcomes 'positive ' and 'negative' (supposed-
ly indicating the presence and absence of D respectively). The test 
is a fairly sensitive one: its chance of giving a false negative out-
come (showing 'negative' when thc subject has D) is cqual to 0, 
and its chance of giving a false positivc outcome (showing 'posi-
tive' when the subject does not have D) is small : let us supposc it 
is equal to YYo. Suppose the incidence of thc disease is very low, 
say one in onc thousand in the population. A randomly selected 
person is given the test and shows a positive outcome. What is the 
chance they have D? 

One might reason intuitively as follows. They have testcd pos-
itive. The chance of testing positive and not having D would bc 
only one in twcnty. So the chance of having D given a positive 
result should be around ninetcen twcntieths, that is, 95%. This is 
the answer given by the majority of thc respondents too. It is 
wrong; very wrong in fact: the correct answer is less than two in 
one hundred! Let us see why. 

Firstly, anyone who answered 95% should have been suspi-
cious that a piece of information given in the problem was not 
used, namely the incidence of D in the population. In fact, that 
information is highly relevant, because the correct calculation 

I The discussion here fo llows Howson 2000, Chapter 3. 
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cannot be performed without it, as we now show. We can repre-
sent the false negative and false positive chances formally as con-
ditional probabilities P(-e I h) = 0 and pre I -h) = 0.05 
respectively, where h is 'the subject has D' and e is 'the outcome 
is positive'. This means that our target probability, the chance that 
the subject has D given that they tested positive, is P(h I e), which 
we have to evaluate. Since the subject was chosen randomly it 
seems reasonable to equate P(h), the absolute probability of them 
having D, to 0.00 I, the incidence of D in the population. By (5) 
in section b we infer that pre I h) = I, and that P(-h) = 0.999. We 
can now plug these numbers into Bayes's Theorem in the form 
(20) in b, and with a little arithmetic we deduce that P(h I e) = 

0.0196, that is, slightly less than 2%. 
Gigerenzer (1991) has argued that the correct answer is more 

naturally and easily found from the data of the problem by trans-
lating the fractional chances into whole-number frequencies with-
in some actual population of 1,000 people in which one individual 
has D, and that the diagnosis of why most people initially get the 
wrong answer, like the Harvard respondents, is due to the fact that 
the data would originally have been obtained in the form of such 
frequencies, and then been processed into chance or probability 
language which the human mind finds unfamiliar and unintuitive. 
Thus, in the Gigerenzer-prescribed format, we are looking to find 
the frequency of D-sufferers in the subpopulation of those who 
test positive. Well, since the false negative rate is zero, the one 
person having D should test positive, while the false negative rate 
implies that, to the nearest whole number, 50 of the 999 who don't 
have D will also test positive. Hence 51 test positive in total , of 
whom I by assumption has D. Hence the correct answer is now 
easily seen to be approximately I in 51 , without the dubious aid 
of recondite and unintelligible formulas . 

Caveat empfor! 2 When something is more difficult than it 
apparently needs to be, there is usually some good reason, and 
there is a compelling reason why the Gigerenzer mode of reason-
ing is not to be recommended: it is invalid! As we shall see later, 
there is no direct connection between frequencies in finite sam-
ples and probabilities. One cannot infer directly anything about 

2 Buyer beware! 
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frequencies in finite samples from statements about a probability 
distribution, nor, conversely, can one infer anything directly about 
the latter from frequencies in finite samples. Tn particular, one is 
certainly not justifi ed in translating a 5% chance of e conditional 
on into the statement that in a sample of 999, 50 will test pos-
itive, and even less can one, say, translate a zero chance of e con-
ditional on h into the statement that a single individual with D will 
test positive. As we shall also see later, the most that can be assert-
ed is that with a high probability in a big enough sample the 
observed frequency wi II lie within a given neighbourhood of the 
chance. How we compute those neighbourhoods is the task of sta-
ti stics, and we shall discuss it again in Chapters 5 and 8. 

It is instructive to reflect a little on the significance of the 
probability-calculus computation we have just performed. It 
shows that the criteria of low false-positive and fal se-negative 
rates by themselves tell you nothing about how reliable a positive 
outcome is in any given case: an additional piece of information 
is required, namely the incidence of the di sease in the population. 
The background incidence also goes by the name of 'the base 
rate ', and thinking that valid inferences can be drawn just from the 
knowledge of false positive and negative rates has come to be 
called the ' base-rate fallacy'. As we see, if the base-rate is suffi-
ciently low, a positive outcome in the Harvard Test is consistent 
with a very small chance of the subject having the disease, a fact 
which has profound practical implications: think of costly and 
possibly unpleasant follow-up investigations being recommended 
after a positive result for some very rare disease . The Harvard Test 
is nevertheless a challenge to the average person 's intuition, which 
is actually rather poor when it come to even quite elementary sta-
tistical thinking. Translating into frequency-l anguage, we see that 
even if it can be guaranteed that the null hypothesis (that the sub-
ject does not have the disease) will be rej ected only very infre-
quently on the basis of an incorrect (positive) result, this is 
nevertheless consistent with almost all those rejections being 
incorrect, a fact that is intuitively rather surprising-which is of 
course why the base-rate fallacy is so entrenched. 

But there is another, more profound, lesson to be drawn. We 
said that there are two quite distinct types of probability, both 
obeying the same fo rmal laws (1)-(4) above, one having to do 
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with the tendency, or objective probability, of some procedure to 
produce any given outcome at any given trial, and the other with 
our uncertainty about unknown truth-values, and which we called 
epistemic probability, since it is to do with our knowledge, or lack 
of it. Since both these interpretations obey the same formal laws 
(we shall prove this later), it follows that every formally valid 
argument involving one translates into aformally valid argument 
involving the other. 

This fact is of profound significance. Suppose hand e in the 
Harvard Test calculation had denoted some scientific theory 
under scrutiny and a piece of experimental evidence respectively, 
and that the probability function P is of the epistemic variety 
denoting something we can call 'degree of certainty'. We can 
infer that even if e had been generated by an experiment in which 
e is predicted by h but every unlikely were h to be false, that 
would still by itse(j'give us no warrant to conclude anything about 
the degree of certainty we are entitled to repose in h3• To do that 
we need to plug in a value for P(h) , the prior probability of h. That 
does not means that you have to be able to compute P(h) accord-
ing to some uniform recipe; it merely means that in general you 
cannot make an inference ending with a value for P(h I e) without 
putting some value on P(h) , or at any rate restricting it within cer-
tain bounds (though this is not always true, especially where there 
is a lot of experimental data where, as we shall see, the posterior 
probability can become almost independent of the prior). 

The lessons of the Harvard Medical School Test now have a 
much more general methodological applicability. The results can be 
important and striking. Here are two examples. The first concerns 
what has been a major tool of statistical inference, significance 

] That it does is implicit in the so-called Neyman-Pearson theory of statistical 
testing which we sha ll discuss later in some detail. And compare Mayo: if e 'fits' 
h [is to be expected on the basis of h] and there is a very small chance that the 
test procedure ' would yield so good a fit if h is fa lse ', then 'e should be taken as 
good grounds for h to the extent that h has passed a severe test with e' (1996, 
p.I77 ; we have changed her upper case e and h to lower case). Mayo responds to 
the Harvard Medical School Test example in Mayo 1977, but at no point docs 
she explain satisfactorily how obtaining an outcome which g ives one less than a 
2% chance of having the disease can possibly constitute 'good grounds ' for the 
hypothesis that one has it. 
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testing, a topic we shall discuss in detail in Chapter 5. A Neyman-
Pearson significance test is a type of so-called likelihood ratio 
test, where a region in the range of a test variable is deemed a 
rejection region depending on the value of a likelihood ratio on 
the boundary. This is determined in such a way that the probabil-
ities of (a) the hypothesis being rejected if it is true, and (b) its 
being accepted if it is false , are kept to a minimum (the extent to 
which this is achievable will be discussed in Chapter 5). But these 
probabilities (strictly, probability-densities, but that does not 
affect the point) are, in effect, just the chances of a false negative 
and a false positive, and as we saw so graphically in the Harvard 
Medical School Test, finding an outcome in such a region conveys 
no information whatever by Uselfabout the chance of the hypoth-
esis under test being true. 

The second example concerns the grand-sounding topic oLvei-
entitie realism, the doctrine that we are justified in inferring to at 
least the approximate truth of a scientific theory r if certain con-
ditions are met. These conditions are that the experimental data 
are exceptionally unlikely to have been observed if r is false, but 
quite likely if it is true. The argument, the so-called No Miracles 
argument, for the inference to the approximate truth of r is that if 
T is not approximately true then the agreement between r and the 
data are too miracul ous to be due to chance (the use of the word 
'miraculous', whence the name of the argument, was due to 
Putnam 1975). Again, we see essentially the same fallacious infer-
ence based on a small false positive rate and a small false nega-
tive rate as was committed by the respondents to the Harvard Test. 
However much we want to believe in the approximate truth of the-
ories like quantum electrodynamics or General Relativity, both of 
which produce to order predictions correct to better than one part 
in a billion, the No Miracles argument is not the argument to jus-
tify such belief (a more extended discussion is in Howson 2000, 
Chapter 3). 

2.d Countable Additivity 

Before we leave this general discussion we should say something 
about a further axiom that is widely adopted in textbooks of math-
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ematical probability : the axiom of countable additivity. This says 
that ifa), a2, a3, ... are a countably infinite family (this just means 
that they can be enumerated by the integers I, 2, 3, ... ) of mutu-
ally inconsistent propositions in the domain of P and the state-
ment 'One of the G. is true' is also included in the domain of P 

I 

then the probability of the latter is equal to the sum of the P(aJ 
Kolmogorov included a statement equivalent to it, his 'axiom of 
continuity ' , together with axioms (1)- (4) in his celebrated mono-
graph (1950) as the foundational axioms of probability (except 
that he called (4) the ' definition ' of conditional probability), and 
also required the domain of P to be closed not only under finite 
disjunctions (now unions, since the elements of the domain are 
now sets) but also countable ones, thus making it what is called a 
0-field, or a-algebra. These stipulations made probability a 
branch of the very powerful mathematical theory of measure, and 
the measure-theoretic framework has since become the paradigm 
for mathematical probability. 

Mathematical considerations have undoubtedly been upper-
most in this decision : the axiom of countable additivity is required 
for the strongest versions of the limit theorems of probabi lity 
(characteristically prefaced by ' almost certainly', or ' with proba-
bility one', these locutions being taken to be synonymous); also 
the theory of random variables and distributions, particularly con-
ditional distributions, receives a very smooth development if it is 
included. But we believe that the axioms we adopt should be driv-
en by what logicians call 'soundness' considerations: their conse-
quences should be true ofwhatcvcr interpretation we wish to give 
them. And the brute fact is that for each of the principal interpre-
tations of the probability calculus, the chance and the epistemic 
interpretation , not only are there no compelling grounds for think-
ing the countable additivity axiom always true but on the contrary 
there are good reasons to think it sometimesja/se. 

The fact is that if we measure chances, or tendencies, by lim-
iting relative frequencies (see Chapter 3) then we certainly have 
no reason to assume the axiom, sincc limiting relative frequen-
cies, unlike finite frequencies in fixed-length samples, do not 
always obey it: in particular, if each of a countable infinity of 
exclusive and exhaustive possible outcomes tends to occur only 
finitely many times then its limiting relative frequency is zero, 
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while that of the disjunction is 1. As for the epistemic interpreta-
tion, as de Finetti pointed out (1972, p. 86), it may be perfectly 
reasonable (given suitable background information) to put a zero 
probability on each member of an exhaustive countably infinite 
partition of the total range of possibilities, but to do so contradicts 
the axiom since the probability of the total range is always 1. To 
satisfy the axiom of countable addivity the only permissible dis-
tribution of probabilities over a countable partition is one whose 
values form a sufficiently quickly converging sequence: for 
example, 112, 1/4, 1/8, ... , and so forth. In other words, only 
very strongly skewed distributions are ever permitted over count-
ably infinite partitions! 

In both case, for chances and epistemic probabilities, there-
fore, there are cases where we might well want to assign equal 
probabilities to each of a countable infinity of exclusive and 
exhaustive outcomes, which we can do consistently if countable 
additivity is not required (but they must receive the uniform value 
0), but would be prevented from doing so by the principle of 
countable additivity. It seems wrong in principle that an apparent-
ly gratuitous mathematical rule should force one to adopt instead 
a highly biased distribution. Not only that: a range of apparently 
very impressive convergence results, known in the literature as 
Bayesian convergence-of-opinion theorems, appear to show that 
under very general conditions indeed one's posterior probabilities 
will converge on the truth with probability one, where the truth in 
question is that of a hypothesis definable in a 0-field of subsets of 
an infinite product space (see, for example, Halmos 1950, p. 213 , 
Theorem B). In other words, merely to be a consistent probabilis-
tic reasoner appears to commit one to the belief that one's poste-
rior probability of a hypothesis about an infinite sequence of 
possible data values will converge on certainty with increasing 
evidence. Pure probability theory, which we shall be claiming is 
no more than a type of logic, as empty 0/ spec(/ic content as 
deductive logic, appears to be all that is needed to solve the noto-
rious problem of induction! 

If this sounds a bit too good to be true, it is: these results all 
turn out to require the principle of countable additivity for their 
proof, and exploit in some way or other the concentration of prob-
ability over a sufficiently large initial segment of a countably infi-
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nite partition demanded by the principle. To take a simple exam-
ple from Kelly 1996, p. 323: suppose h says that a data source 
which can emit 0 or I emits only 1 s on repeated trials, and that 
P(h) > O. So h is false if and only if a 0 occurs at some point in an 
indefinitely extended sample. The propositions a ll saying that a 0 
occurs first at the nth repetition are a countably infinite disjoint 
family, and the probability of the statement that at least one of the 
ai is true, given the falsity of h, must be 1. So given the front-end 
skewedness prescribed by the axiom of countable additivity, the 
probability that h is false will be mostly concentrated on some 
finite disjunction a 1 v ... van' It is left to the reader to show, as 
an easy exercise in Bayes's Theorem in the form (20), section b 
above, that the probability that h is true, given a sufficiently long 
unbroken run of 1 s, is very close to 1. 

There is (much) more to be said on this subject, but for further 
discussion the reader is encouraged to consult de Finetti 1872, 
Kelly 1996, pp. 321 - 330, and Bartha 2004. Kelly 's excellent book 
is particularly recommended for its illuminating discussion of the 
roles played not only by countable additivity but also (and non-
neglibly) by the topological complexity of the hypotheses in prob-
abilistic convergence-to-the-truth results. 

2.e I Random Variables 

In many applications the statements in the domain of P are those 
ascribing values, or intervals of values, to random variables. Such 
statements are the typical mode of description in statistics. For 
example, suppose we are conducting simultaneous measurements 
of individuals ' heights and weights in pounds and metres. 
Formally, the set S of relevant possible outcomes will consist of 
all pairs s = (x, y) of non-negative real numbers up to some big 
enough number for each of x and y , height and weight respective-
ly (measuring down to a real number is of course practically 
impossible, but that is why this is an idealisation). 

We can define two functions X and Yon S such that X(x, y) = 
x and Y('C, y) = y . X and Yare examples of random variables: X 
picks out the height dimension, and Ythe weight dimension of the 
various joint possibilities. In textbooks of mathematical probabil-
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ity or statistics, a typical formula might be P(X > x). What does 
this mean? The answer, perhaps not surprisingly, will depend on 
which of the two interpretations of P mentioned earlier is in play. 
On the chance interpretation, P(X > x) will signify the tendency 
of the randomising procedure to generate a pair of observations 
(x', y') satisfving the condition that x' > x, and this tendency, as 
we observed, will be evaluated by inspecting the frequency with 
which it does generate such pairs, 

On the other, epistemic, interpretation, P(X > x) will signify a 
degree of uncertainty about some specific event signified by the 
same inequality formula X> x. For example, suppose that we are 
told that someone has been selected, possibly but not necessarily 
by a randomising procedure, but we know nothing about their 
identity. We are for whatever reason interested in the magnitude 
of their height, and entertain a range of conjectures about it, 
assigning uncertainty-probabilities to them. One such conjecture 
might be 'The height of the person selected exceeds x metres ', 
and P(X > x) now symbolises the degree of certainty attached to 
it. 

This second reading shows that 'random variable' does not 
have to refer to a random procedure: there, it was just a way of 
describing the various possibilities determined by the parameters 
of some application. Indeed, not only do random variables have 
nothing necessarily to do with randomness, but they are not vari-
ables either: as we saw above, X, Y, etc. are not variables at all but, 
since they take different values depending on which particular 
possibilities arc instantiated,/ime/ions on an appropriate possibil-
ity-space (in the full measure-theoretic treatment, their technical 
name is measurable jill1ctions). 

2.f Distributions 

Statements of the form 'X < x', 'X:s; x', play a fundamental role 
in mathematical statistics. Clearly, the probability of any such 
statement (assuming that they are all in the domain of the proba-
bility function) will vary with the choice of the real number x; it 
follows that this probability is a function F(x:) , the so-called dis-
tributionfimction, of the random variable X. Thus, where P is the 
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probability measure concerned, the value of F(x) is defined to be 
equal, for all x to P(X::; x) (although F depends therefore also on 
X and P. these arc normally apparent from the context and F is 
usually written as a function of x only). Some immediate conse-
quences of the definition of F(.x:) are that 

(i) if Xj < x 2 then F('(j) ::; F(x2). and 

(ii) P(''(j < X::; x 2) = F(x) - F(.x: j ). 

Distribution functions arc not necessarily functions of one 
variable only. For example, we might wish to describe a possible 
eventuality in terms of the values taken by a number of random 
variables. Consider the 'experiment' which consists in noting the 
heights (X, say) and weights (Y) jointly of members of some 
human population. It is usually accepted as a fact that there is a 
joint (objective) probabil ity distribution for the vector variable 
(X Y), meaning that there is a probability distribution function 
F(x. y) = P(X::; x & Y::; y). Mathematically this situation is straight-
forwardly generalised to distribution functions of n variables. 

2.9 Probability Densities 

It follows from (ii) that ifF('() is differentiable at the point x , then 
the probability density at the point x is defined and is equal to 

dF(x) 
f(x) = 

dx 
in other words, if you divide the probability that X 

is in a given interval (x. x + h) by the length h of that interval and 
let h tend to 0, then if F is differentiable, there is a probability 
density at the point x, which is equal tof('(}. If the density exists 
at every point in an interval, then the associated probability dis-
tribution of the random variable is said to be continuous in that 
interval. The simplest continuous distribution, and one which we 
shall refer to many times in the following pages, is the so-called 
uniform distribution. A random variable X is uniformly distrib-
uted in a closed interval I if it has a constant positive probabili-
ty density at every point in I and zero density outside that 
interval. 
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Probability densities are of great importance in mathematical 
statistics-indeed, for many years the principal subject of 
research in that field was finding the forms of density functions 
of random variables obtained by transformations of other ran-
dom variables. They are so important because many of the prob-
ability distributions in physics, demography, biology, and 
similar fields are continuous, or at any rate approximate contin-
uous distributions . Few people believe, however, in the real-as 
opposed to the mathematical-existence of continuous distribu-
tions, regarding them as only idealisations of what in fact are 
discrete distributions. 

Many of the famous distribution functions in statistics are 
identifiable only by means of their associated density functions; 
more precisely, those cumulative distribution functions have no 
representation other than as integrals of their associated density 
functions. Thus the famous normal distributions (these distribu-
tions, of fundamental importance in statistics, are uniquely deter-
mined by the values of two parameters, their mean and standard 
deviation, which we shall discuss shortly) have distribution func-
tions characterised as the integrals of density functions. 

Some terminology. Suppose X and Yare jointly distributed 
random variables with a continuous distribution function F(X, Y) 
and density function ./(t. y). Then F(XJ = r f(x, y)dy is called 
the marginal distribution of X. The operation of obtaining margin-
al distributions by integration in this way is the continuous ana-
logue of using the theorem of total probability to obtain the 
probability P(a) of a by taking the sum 'i:.P(a & b). Indeed, if X 
and Yare discrete, then the marginal distribution for X is just the 
sum P(X = x) = IP(X = x. & Y = v). The definitions are 

• I I I • j 

straightforwardly generalised to joint distributions of n variables. 

2.h Expected Values 

The expected value of a function g(X) of X is defined to be (where 
it exists) the probability-weighted average of the values of g. To 
take a simple example, suppose that g takes only finitely many 
valuesg l ,···· ,gil with probabilities a l ,· .. ,an' Then the expect-
ed value E(g) of g always exists and is equal to 'i:.g;G;. If X has a 
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probability density function.f(x) and g is integrable, then E(g) = f x, g(x)[r-,)dx where the integral exists. 
X,In most cases, functions of random variables are themselves 

random variables. For example, the sum of any n random vari-
ables is a random variable. This brings us to an important proper-
ty of expectations: they are so-called linearfimctionals. In other 
words, if XI' ... , Xn are n random variables, then if the expecta-
tions exist for all the then, because expectations are either 
sums or limits of sums, so does the expected value of the sum X = 
Xl + ... + Xn and E(X) = E(XI) + . .. + E(XJ 

2.i I The Mean and Standard Deviation 

Two quantities which crop up all the time in statistics are the mean 
and standard deviation of a random variable X The mean value of 
X is the expected value E(X) of X itself, where that expectation 
exists; it follows that the mean of X is simply the probability-
weighted average of the values of X The variance of X is the 
expected value of the function (X - mi, where that expectation 
exists. The standard deviation of X is the square root of the vari-
ance. The square root is taken because the standard deviation is 
intended as a characteristic measure of the spread of X away from 
the mean and so should be expressed in units of X Thus, if we write 
s.d.(X) for the standard deviation of X, s.d.(X) = vE[(X - m)2J. 
where the expectation exists. The qualification 'where the expec-
tation exists' is important, for these expected values do not always 
exist, even for some well-known distributions. For example, if X 

has the Cauchy density - then it has neither mean nor 
. n(a2 + x2) 

vanance. 
We have already mentioned the family of normal distributions 

and its fundamental importance in statistics. This importance 
derives from the facts that many of the variables encountered in 
nature are normally distributed and also that the sampling distri-
butions of a great number of statistics tend to the normal as the 
size ofthe sample tends to infinity (a statistic is a numerical func-
tion of the observations, and hence a random variable). For the 
moment we shall confine the discussion to normal distributions of 
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one variable. Each member of this family of distributions is com-
pletely determined by two parameters, its mean ,Ll and standard 
deviation 0: The normal distri bution functi on itself is given by the 
integral over the values of the real variable t from - 00 to x of the 
density we mentioned above, that is, by 

I _ 1 ( I - )2 
l (t ) = - e 2 - iT . aV2ii: 

It is easily veri f ied from the analytic expression for F(x) that 
th e parameters ,Ll and (J are indeed the mean and standard devi-
ati on of X. The curve of the normal density is the famili ar bell-
shaped curve symmetrical about x = ,Ll wi th the points x = jLl ± 
(J corresponding to the points of maximum slope of the curve 
(Figure 2.1). For these distributions the mean coincides with 
the median, the va lue ofx such that the probability of the se t {X 
< x} is one hal f (these two po ints do not co incide for a ll other 
types of distribution, however). A fact we shall draw on later is 
that the interva l on the x-ax is determined by the di stance of 
1.96 standard deviations centred on the mean supports 95% of 
th e area under the curve, and hence rece ives 95% of the total 
p robability. 

f(x) 

'11 - 0" x 

FIGURE 2.1 
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2.; Probabilistic Independence 

Two propositions h I and h2 in the domain of P are said to be prob-
abilistically independent (relative to some given probability 
measure P if and only if P(h l & h2) = P(h l )P(hJ It follows 
immediately that, where P(h I) and P(h2 ) are both greater than 
zero, so that the conditional probabilities are defined, P(h I 1 h2 ) = 
P (h f) and P (h II h f) = P(h), just in case h I and h2 are probabilis-
tically independent 

Let us consider a simple example, which is also instructive in 
that it displays an interesting relationship between probabilistic 
independence and the so-called Classical Definition of probability. 
A repeatable experiment is determined by the conditions that a 
given coin is to be tossed twice and the resulting uppermost faces 
are to be noted in the sequence in which they occur. Suppose each 
of the four possible types of outcome-two heads, two tails, a 
head at the first throw and a tail at the second, a tail at the first 
throw and a head at the second-has the same probability, which 
of course must be one quarter. A convenient way of describing 
these outcomes is in terms of the values taken by two random 
variables XI and X2, where XI is equal to 1 if the first toss yields a 
head and 0 if it is a tail, and X2 is equal to I if the second toss 
y ields a head and 0 if a tail. 

According to the Classical Definition, or, as we shall call it, 
the Classical Theory of Probability, which we look at in the next 
chapter (and which should not be confused with the Classical 
Theory of Statistical Inference, which we shall also discuss), the 
probability of the sentence XI = I' is equal to the ratio of the 
number of those possible outcomes of the experiment which sat-
isfy that sentence, divided by the total number, namely four, of 
possible outcomes. Thus, the probability of the sentence 'XI = \' 
is equal to \ 12, as is also, it is easy to check, the probability of 
each of the four sentences of the form 'X = X " i = \ or 2, x = 0 

I I· I 

or I . By the same Classical criterion, the probability of each of the 
four sentences 'XI = XI & X2 = xc' is \/4. 

Hence 
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and consequently the pairs of sentences 'XI = x I' , 'X2 = x2 ' are 
probabilistic ally independent. 

The notion of probabilistic independence is generalised to n 
propositions as follows: hi' ... ,hn are said to be probabilistically 
independent (relative to the measure P) if and only if for every 
subset hi!' ... ,hik of hI' ... ,hn. 

It is easy to see, just as in the case of the pairs, that if any set of 
propositions is probabilistically independent, then the probability 
of anyone of them being conditional on any of the others, where 
the conditional probabilities are defined, is the same as its uncon-
ditional probability. It is also not difficult to show (and it is, as we 
shall see shortly, important in the derivation of the binomial dis-
tribution) that if hI' ... ,hn are independent, then so are all the 2" 
sets ± h /' ... ,± hn' where +h is hand -h is 

Any n random variables XI' ... ,Xn are said to be independent 
if for all sets of intervals II' ... ,In of values of XI' ... ,Xn respec-
tively, the propositions XIE 11' ... ,Xn E In are probabilistically 
independent. We have, in effect, already seen that the two random 
variables XI and X 2 in the example above are probabilistically 
independent. If we generalise that example to that of the coin 's 
being tossed n times, and define the random variables XI ' ... ,X n 

just as we defined XI and X 2, then again a consequence of apply-
ing the Classical 'definition' to this case is that XI' ... ,x" are 
probabilistically independent. It is also not difficult to show that 
a necessary and sufficient condition for any n random variables 
XI' ... ,x" to be independent is that 

where F(x l , ••• ,x) is the joint distribution function of the vari-
ables XI' ... ,Xn and F(x) is the marginal distribution of Xi' 
Similarly, if it exists, the joint density f(xI' ... ,x ,) factors 
into the product of marginal densitiesj(x l ) .. . f(x,) if the Xi are 
independent. 
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2. k I Conditional Distributions 

According to the conditional probability axiom, axiom 4, 

(1) P( X < x I y < Y < Y + 6 y) = 

pry < Y y + 6y) 

37 

The left-hand side is an ordinary conditional probability. Note 
that if F(x) has a densityHx) at the point x, then P(X = x) = 0 at 
that point. We noted in the discussion of(4) that P(a I b) is in gen-
eral only defined if P(b) > O. However, it is in certain cases pos-
sible for b to be such that P(b) = 0 and for P(a I b) to take some 
definite value. Such cases are afforded where b is a sentence of 
the form Y = Y and there is a probability densityf(y) at that point. 
For then, if the joint density f(x, y) also exists, then multiplying 
top and bottom in ( I) by 6 y, we can see that as 6 y tends to 0, the 
right-hand side of that equation tends to the quantity 

IXf(u,y)dU , 

- x .1M 
wherej(v) is the marginal density ofy, which determines a distri-
bution function for X, called the conditional distribution .Iimction 
of X with respect to the event Y = Y. Thus in such cases there is a 
perfectly well-defined conditional probability 

P(x] < X x21 Y = y), 

even though pry = y) = O. 

The quantity f('(,y! is the density function at the point X = 
.1M 

x of this conditional distribution (the point Y = y being regarded 
now as a parameter), and is accordingly called the conditional 
probability density of X at x, relative to the event Y = Y. It is of 
great importance in mathematical statistics and it is customarily 
denoted by the symbol.f(x I y). Analogues of (18) and (19), the 
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two forms of Bayes's Theorem, are now easily obtained for densi-
ties: where the appropriate densities exist 

1(, I y) = f(y I 
f(y) 

and 
Rv I x)frx) f(, I y) =- --_.- . 

. fXxf(y I x)fMdx 

2.1 The Bivariate Normal 

We can illustrate some of the abstract formal notions we have di s-
cussed above in the context of a very important multivariate di s-
tribution, the bivariate normal distribution. This distribution is, as 
its name implies, a distribution over two random variables, and it 
is determined by five parameters. The marginal distributions of 
the two variables X and Yare both themselves normal, with means 
,ux ' fly and standard deviations ox' Oy. One more parameter, the 
correlation coefficient p, completely specifies thc di stribution. 
The bivariate density is given by 

f(x,y) = 

This has the form of a more-or-Iess pointed, more-or-Iess elongat-
ed hump over the x. y plane, whose contours are cllipses with 
eccentricity (departure from circularity) determined by p. plies 
between -1 and + 1 inclusive. When p = 0, X and Yare uncorre-
lated, and the contour ellipses are circles. When p is either + 1 or 
-1 the ellipses degenerate into straight lines. In this case all the 
probability is carried by a set of points of the form y = ax + b. for 
specified a and b. which will depend on the means and standard 
deviations of the marginal distributions. It follows that the condi-
tional probability P(X = x I Y = y) is 1 if y = ax + b. and ° if not. 

The conditional distributions obtained from bivariate (and 
more generally multivariate) normal distributions have great 
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importance in the area of statistics known as regression 
It is not difficult to show that the mean ,u(X I y) = r :"(./("( I y)dx 
(or the sum where the conditional distribution is disErete) has the 

equation Il(X I y) = Ilx + P d' (y - Ilv)' In other words, the depend-
) . 

ence of the mean on y is linear, with gradient, proportional to p, 
and this relationship defines what is called the regression of X on 
Y. The linear equation above implies the well-known phenomenon 
of regression to the mean. Suppose Px = Py and ,ux = Il y = m. Then 
,u(X I y) = m + pCv - m), which is the point located a proportion p 
of the distance between y and m. For example, suppose that peo-
ple's heights are normally distributed and that Y is the average of 
the two parents' height and X is the offspring's height. Suppose 
also that the means and standard deviations of these two variables 
are the same and that p = 112. Then the mean value of the off-
spring's height is halfway between the common population mean 
and the two parents' average height. It is often said that results like 
this explain what we actually observe, but explaining exactly how 
parameters of probability distributions are linked to what we can 
observe turns out to be a hotly disputed subject, and it is one 
which will occupy a substantial part of the remainder of this book. 

Let us leave that topic in abeyance, then, and end this brief 
outline of that part of the mathematical theory of probability 
which we shall have occasion to use, with the derivation and some 
discussion of the limiting properties of the first non-trivial ran-
dom-variable distribution to be investigated thoroughly, and 
which has no less a fundamental place in statistics than the nor-
mal distribution, to which it is intimately related. 

2.m The Binomial Distribution 

This was the binomial distribution. It was through examining the 
properties of this distribution that the first great steps on the road 
to modern mathematical statistics were taken, by James Bernoulli, 
who proved (in Ars Conjectandi, published posthumously in 
1713) the first of the limit theorems for sequences of independent 
random variables, the so-called Weak Law o.fLarge Numbers, and 
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Abraham de Moivre, an eighteenth-century Huguenot mathemati-
cian settled in England, who proved that, in a sense we shall make 
clear shortly, the binomial distribution tends for large n to the nor-
mal. Although Bernoulli demonstrated his result algebraically, it 
follows, as we shall see, from de Moivre's limit theorem. 

Suppose (i) Xi' i = I, ... , n, are random variables which take 
two values only, which we shall label 0 and 1, and that the prob-
ability that each takes the value 1 is the same for all i, and 
equals p: 

P(J\ = 1) = = 1) = p. 

Suppose also (ii) that the Xi are independent; that is, 

P(XI = Xl & ... & Xn = X) = P(XI = XI) x ... X P(J\, = xJ 
where Xi = 1 or O. In other words, the Xi are independent, identi-
cally distributed random variables. Let Yin) = XI + ... + XII. Then 
for any f; 0 S r s n, 

since using the additivity property, the value of P is obtained by 
summing the probabilities of all conjunctions 

where r of the X are ones and the remainder are zeros. There 
I 

are "C, of these, where "C, is the number of ways of selecting 

b· f d . 1 n! h . I r 0 out 0 n, an IS equa to --- - ,were n! IS equa to 
(n -r)!r! 

n(n - l)(n - 2) ... 2.1, and O! is set equal to 1). By the independ-
ence and constant probability assumptions, the probability of each 
conjunct in the sum is p'"(I - pr ',since P(Xi = 0) = 1 - p. 

is said to possess the binomial distrihution. The mean of 
is np, as can be easily seen from the facts that 



THE PROBABILITY CALCULUS 

and that 

E(X) = P . I + (1 - p) . 0 = p. 

The squared standard deviation, or variance of Yin)' is 

E(Y(n) - npj2 = E(Y(n/) + E(npj2-

= + (npj2- 2npE(Y(n) 

= - (npj2. 

Now 

= "L(X2) + 

= np + n(n - 1)p2. 

Hence 

2.m I The Weak Law of Large Numbers 

41 

The significance of these expressions is apparent when n becomes 
very large. De Moivre showed that for large n, is approximately 
normally distributed with mean np and standard deviation 

vnp(f - p) (the approximation is very close for quite moderate 

values of n). This implies that the so-called standardised variable 

Z O;n) - np) . . 1 11 d' 'b del = . IS approximate y norma y Istn ute lor arge n, 
ynp(l - p) 

with mean 0 and standard deviation I (Z is called 'standardised' 
because it measures the distance of the relative frequency from its 
mean in units of the standard deviation). Hence 

P(-k < Z < k) = <t>(k) - <t> ( - k), 

where <t> is the normal distribution function with zero mean and 
unit standard deviation. Hence 
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P(p - k jl!-nq < '! < p + kip;;) = ¢(k) - ¢ (- k), 
n 11 

where q = 1 - p. So, setting E = k 1 P: ' 
11 

P(p - E < p + E) = (P -¢ (- EI n \ 
11 pq \ pq ! 

Clearly, the right-hand side of this equation tends to 1, and we 
have obtained the Weak Len!' oj"Large Numhers: 

y 
P( I p i < t") -- 1, for all E > O. 

n 

This is one of the most famous theorems in the history of 
mathematics. James Bernoulli proved it originally by purely com-
binatorial methods. It took him twenty years to prove, and he 
called it hi s "golden theorem". It is the first great result of the dis-
cipline now known as mathematical statistics and the forerunner 
of a host of other limit theorems of probability. Its significance 
outs ide mathematics I ies in the fact that sequences of independent 
binomial random variabl es w ith constant probability, or Bernoulli 
sequences as they are called, are thought to model many types of 
sequence of repeated stochastic trials (the most familiar being 
tossing a coin n times and registering the sequence of heads and 
tail s produced) . What thc theorem says is that for such sequences 
of trials thc relative frequency of the particular character con-
cerned, like heads in the example we have just mentioned, is with 
arbitrarily great probability going to be situated arbitrarily close 
to the parameter p. 

The Weak Law, as stated above, is only one way of appreciat-
ing the significance of what happens as 11 increases. As we saw, it 
was obtained from the approximation 

ftj f -
pq Y pq 

P(p - k ... <- < p +k - )=<I>(k)-¢ (- k) , 
n 11 n 

where q = 1 - p, by replacing the vari able bounds (depending on 
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n) ± k ;-;;q by £, and replacing k on the right-hand sidc by £/;-. M 
The resulting equation is equivalent to the first. In other words, 
the Weak Law can be seen either as the statement that if we select 
some fixed interval of length 2£ centred on p. then in the limit as 
n increases, all the distribution will li e within that interval, or as 
the statement that if we f irst select any va lue between 0 and 1 and 
consider the interval centred on p which carries that value of the 
probability, then the endpoints of the interval move towards p as 
n increases, and in the limit coincide with p. 

Another ' law of large numbers' seems even more emphatically 
to point to a conncction between probabilities and frcquencies in 
sequences of identically distributed, independent binomial ran-
dom variables. This is the so-called Strong Law, which is usually 
stated as a result about actually infini te sequenccs of such vari-
ables: it asserts that with probability cqual to 1, the limit of 
exists (that is to say, the relative frequency of ones converges to 
some fini te value) and is equal top. 

So stated, the Strong Law requires for its proof thc axiom of 
countable additivity, which we have cautioned against accepting 
as a genera l principle. Nevertheless, a ' strong enough ' version of 
the Strong Law can be stated which does not assumc countable 
additivity (the other ' strong' limit theorems of mathematical prob-
ability can usually be rephrased in a similar way): it says that for 
an infinite sequence XI ' X2 , .... of {O, I }-valued random vari-
ables, if D, £ are any positive numbers, however small , then there 
exi sts an 11 such that for a ll m>n the probability that , III ) - P is 
less than £ is greater than I-D. 

What thi s version of the Strong Law says is that the conver-
gence of the is 1ll1i/hrm in the small probability. The Weak 
Law is weak in the sense that it mere ly says that the probability 
that the dev iation of Y . from J) is sma llcr than £ can be madc 

( II I 

arbitrarily close to I by taking n large enough; the Strong Law 
says that the probability that thc dev iation will become and 
remain sma ller than £ can be made arbitrarily close to I by tak-
ing n large enough. 

At any rate, throughout the eighteenth and nineteenth cen-
turies people took these results to justify inferrin g, from the 
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observed relative frequency of some given character in long 
sequences of apparently causally independent trials, the approxi-
mate value of the postulated binomial probability. While such a 
practice may seem suggested by these theorems, it is not clear that 
it is in any way justifi ed. While doubts were regularly voiced over 
the validity of thi s ' inversion', as it was call ed, of the theorem, the 
temptation to see in it a licence to infer to the value of p from 
'large' samples persists, as we shall see in the next chapter, where 
we shall return to the discussion. 
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