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4 The subjective theory

So have I heard and do in part believe it.
(Shakespeare, Hamlet: I, i, 166)

The subjective theory of probability was discovered independently and at about
the same time by Frank Ramsey in Cambridge and Bruno de Finetti in Italy. Such
simultaneous discoveries are not in fact uncommon in the history of science and
mathematics. Usually, however, although the independent discoverers share a
common set of ideas, their treatments of the subject differ both in details and in
general approach. These differences are of considerable interest, since they illustrate
some of the possible variations in the theory. A detailed comparison of the views
of Ramsey and De Finetti has recently been published by Galavotti (1989, 1991,
1994) in an important series of papers. In the course of expounding the subjective
theory, I will discuss at various points some of these differences between Ramsey
and De Finetti.

The existence of simultaneous discoveries is not perhaps so surprising. Usually
there is a problem situation in the subject, and the discoverers react to this by
producing somewhat similar solutions. We have seen in the previous chapter
that by the mid-1920s there were many severe problems in the tradition of logical
Bayesian which went back to Bayes and Laplace. Some statisticians (notably
Fisher and Neyman) and some philosophers of science (notably Popper) reacted
to this by rejecting Bayesianism altogether. However, another approach was to
devise a new version of Bayesianism which overcame the difficulties of logical
Bayesianism. This was what Ramsey and De Finetti achieved with their new
subjective approach to probability.

Since Ramsey’s key paper is usually referred to as Ramsey (1926) and De
Finetti’s earliest publications have later dates, it may appear that Ramsey is the
first discoverer and that De Finetti hit on the same idea rather later. This impression
is somewhat misleading, however. Ramsey’s paper ‘Truth and Probability’ was
written in 1926, and a large part of it read to the Moral Sciences Club at
Cambridge, but it was not actually published until 1931. Ramsey died at the age
of only 26 in 1930, having made major contributions to the foundations of
mathematics, the philosophy of probability, mathematical logic and economics.
His paper on probability first appeared in the collection published after his early
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death in 1931. De Finetti says that already by April 1928 he had written a complete
exposition of the foundations of probability theory according to the subjective
point of view. This may have been a little later than Ramsey, but De Finetti was
the first to publish (1930a, b, c). In 1931 De Finetti (1931a) gave a full account
of the philosophical aspects of the theory without formulas in his ‘Probabilism’,
and provided more details about the mathematical foundations in his 1931b paper.
Ramsey certainly never heard of De Finetti, and De Finetti seems not to have
read Ramsey until after 1937, when his own views had been completely developed
[see his new footnote (a) added in 1964 to 1937:102]. Thus, the discovery was
completely independent and occurred at almost the same time.

Ramsey’s relation to the older logical tradition is very clear, since he introduces
his new theory by giving detailed criticisms of Keynes’s views. De Finetti,
however, does not appear to have been influenced by Keynes at the time when he
devised the subjective theory. Indeed in his 1931a paper, he seems to be doubtful
about what exactly Keynes’s views were, remarking in a footnote: ‘This seems
to me to be Keynes’s point of view; but I cannot judge well, since I have only
been able to skim his essay quickly.’ (1931a:221). Later, De Finetti expounds
and criticises Keynes’s views, and remarks in a footnote: ‘I briefly saw Keynes’s
book in 1929 (and I quoted it in ‘Probabilismo’ ... 1931 ...), understanding little
of it, however, because of my then insufficient knowledge of English. This year
I have read the German version’ (1938:362, Footnote 18). It thus seems clear
that De Finetti properly studied Keynes only after his own views had been fully
developed. It is also interesting to note that De Finetti’s 1938 paper is entitled
‘Cambridge Probability Theorists’; he mentions only Keynes and Jeffreys, but
not Ramsey. This indicates that he probably only read Ramsey after 1938. In the
light of all this, I will begin the next section with Ramsey’s criticisms of Keynes,
since these follow on naturally from the previous chapter. However in the section
‘Some objections to Bayesianism’ I will give some consideration to De Finetti’s
different route to subjective probability. The remaining sections will expound
the subjective theory itself. ‘Subjective foundations for mathematical probability’
shows how the mathematical theory of probability can be developed on the
subjective approach, and, in particular, gives a full proof of the all important
Ramsey–De Finetti theorem. ‘Apparently objective probabilities in the subjective
theory’ introduces the key notion of exchangeablility, which, as we shall see,
plays a most important rôle in the theory. Both these sections are largely based
on De Finetti (1937), which is my own preferred account of the theory. However,
I will introduce a few changes and amplifications for the sake of clarity and will
also mention some alternatives to be found in Ramsey and in De Finetti’s later
work. ‘A comparison of the axiom system given here with the Kolmogorov
axioms*’ and ‘The relation between independence and exchangeability*’ cover
some rather mathematical points, and in another section I will present my criticism
of De Finetti’s exchangeability reduction.
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Ramsey’s criticisms of Keynes1

According to Keynes there are logical relations of probability between pairs of
propositions, and these can be in some sense perceived. Ramsey criticises this as
follows:

But let us now return to a more fundamental criticism of Mr. Keynes’ views,
which is the obvious one that there really do not seem to be any such things
as the probability relations he describes. He supposes that, at any rate in
certain cases, they can be perceived; but speaking for myself I feel confident
that this is not true. I do not perceive them, and if I am to be persuaded that
they exist it must be by argument; moreover I shrewdly suspect that others
do not perceive them either, because they are able to come to so very little
agreement as to which of them relates any two given propositions.

(1926:161)

This is an interesting case of an argument which gains in strength from the nature
of the person who proposes it. Had a less distinguished logician than Ramsey
objected that he was unable to perceive any logical relations of probability, Keynes
might have replied that this was merely a sign of logical incompetence, or logical
blindness. Indeed Keynes does say: ‘Some men – indeed it is obviously the case –
may have a greater power of logical intuition than others.’ (1921:18). Ramsey,
however, was not just a brilliant mathematical logician but a member of the
Cambridge Apostles as well. Thus Keynes could not have claimed with plausibility
that Ramsey was lacking in the capacity for logical intuition or perception – and
Keynes did not in fact do so.

Ramsey buttresses his basic argument by pointing out that, on the logical theory,
we can apparently perceive logical relations in quite complicated cases, while being
quite unable to perceive them in simple cases. Thus he says:

All we appear to know about them [i.e. Keynes’s logical relations of
probability] are certain general propositions, the laws of addition and
multiplication; it is as if everyone knew the laws of geometry but no one
could tell whether any given object were round or square; and I find it hard
to imagine how so large a body of general knowledge can be combined with
so slender a stock of particular facts. It is true that about some particular
cases there is agreement, but these somehow paradoxically are always
immensely complicated; we all agree that the probability of a coin coming
down heads is 1/2, but we can none of us say exactly what is the evidence
which forms the other term for the probability relation about which we are
then judging. If, on the other hand, we take the simplest possible pairs of
propositions such as ‘This is red’ and ‘That is blue’ or ‘This is red’ and ‘That
is red’, whose logical relations should surely be easiest to see, no one, I
think, pretends to be sure what is the probability relation which connects
them.

(Ramsey 1926:162)
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Ramsey’s doubts about basing probability theory on logical intuition are reinforced
by considering how logical intuition fared in the case of deductive inference,
which is surely less problematic than inductive. Frege, one of the greatest logicians
of all time, was led by his logical intuition to support the so-called axiom of
comprehension, from which Russell’s paradox follows in a few lines. Moreover, he
had companions in this error as distinguished as Dedekind and Peano (for citations,
see Gillies 1982: 92). Hilbert and Brouwer were two of the greatest mathematicians
of the twentieth century. Yet Hilbert’s logical intuition informed him that the Law
of the Excluded Middle was valid in mathematics, and Brouwer’s that it was not
valid. All this indicates that logical intuition is not to be greatly trusted in the
deductive case, and so hardly at all as regards inductive inferences.

Moreover, is so-called logical intuition anything more than a psychological
illusion caused by familiarity? Perhaps it is only as a result of studying the
mathematical theory of probability for several years that the axioms come to seem
intuitively obvious. Maybe the basic principles of Aristotle’s philosophy seemed
intuitively obvious to scholars in medieval Europe, and those of Confucian
philosophy to scholars in China at the same time. I conclude that logical intuition
is not adequate to establish either that degrees of partial entailment exist, or that
they obey the usual axioms of probability. Let us accordingly examine in the next
section how these matters are dealt with in the subjective theory.

Subjective foundations for mathematical probability: the
Ramsey–De Finetti theorem

In the logical interpretation, the probability of h given e is identified with the
rational degree of belief which someone who had evidence e would accord to h.
This rational degree of belief is considered to be the same for all rational individuals.
The subjective interpretation of probability abandons the assumption of rationality
leading to consensus. According to the subjective theory, different individuals (Ms
A, Mr B and Master C say), although all perfectly reasonable and having the same
evidence e, may yet have different degrees of belief in h. Probability is thus defined
as the degree of belief of a particular individual, so that we should really not speak
of the probability, but rather of Ms A’s probability, Mr B’s probability or Master
C’s probability.

Now the mathematical theory of probability takes probabilities to be numbers
in the interval [0, 1 ]. So, if the subjective theory is to be an adequate interpretation
of the mathematical calculus, a way must be found of measuring the degree of
belief of an individual that some event (E say) will occur. Thus, we want to be able
to measure, for example, Mr B’s degree of belief that it will rain tomorrow in
London, that a particular political party will win the next election, and so on. How
can this be done?

Ramsey has an interesting discussion of this problem. His first remark on the
question is that ‘it is, I suppose, conceivable that degrees of belief could be measured
by a psychogalvanometer or some such instrument’ (1926:161). Ramsey’s
psychogalvanometer would perhaps be a piece of electronic apparatus something
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like a superior lie detector. We would attach the electrodes to Mr B’s skull, and,
when he read out a proposition describing the event E in question, the machine
would register his degree of belief in that proposition. Needless to say, even if such
a psychogalvanometer is possible at all, no such machine exists at present, and we
cannot solve our problem of measuring belief in this way.

Ramsey next considers the possibility of using introspection to estimate the
strength of our belief-feeling about some proposition. However, he has an interesting
argument against such an approach:

We can, in the first place, suppose that the degree of a belief is something
perceptible by its owner; for instance that beliefs differ in the intensity of a
feeling by which they are accompanied, which might be called a belief-
feeling or feeling of conviction, and that by the degree of belief we mean the
intensity of this feeling. This view would be very inconvenient, for it is not
easy to ascribe numbers to the intensities of feelings; but apart from this it
seems to me observably false, for the beliefs which we hold most strongly
are often accompanied by practically no feeling at all; no one feels strongly
about things he takes for granted.

(1926:169)

Ramsey is undoubtedly correct here. When I cut a slice of bread to eat, I believe
very strongly that it will nourish rather than poison me, but this belief, under normal
circumstances, is not accompanied by any strong feelings, or indeed any feelings
at all. Ramsey is thus led to the conclusion that: ‘... the degree of a belief is a causal
property of it, which we can express vaguely as the extent to which we are prepared
to act on it’ (1926:169). I am certainly prepared to act on my belief that the bread
is nourishing rather than poisonous by eating it without hesitation, even though I
am not having any strong feelings at the time.

On this approach we should measure the strength of a belief by examining the
character of some action to which it leads. A suitable action for measurement
purposes is betting, and so Ramsey concludes: ‘The old-established way of
measuring a person’s belief is to propose a bet, and see what are the lowest odds
which he will accept. This method I regard as fundamentally sound’ (1926:172).
De Finetti (1930a) also introduces bets to measure degrees of belief.

Betting is of course just one kind of action to which a belief can lead. Does it
therefore give a good measure of the strength of a belief as regards other sorts of
actions to which a belief might lead? Ramsey defends the assumption that it does
as follows:

... this section ... is based fundamentally on betting, but this will not seem
unreasonable when it is seen that all our lives we are in a sense betting.
Whenever we go to the station we are betting that a train will really run, and
if we had not a sufficient degree of belief in this we should decline the bet
and stay at home.

(1926:183)
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My own view is that betting does give a reasonable measure of the strength of a
belief in many cases, but not in all. In particular, betting cannot be used to measure
the strength of someone’s belief in a universal scientific law or theory (for a
discussion, see Gillies 1988a:192–5). However, let us for the moment accept betting
as a reasonable way of measuring degree of belief and see what this assumption
leads to.

To do this, we must now present some mathematics, but, since the purpose of
this book is to discuss the philosophical aspects of probability, I have tried to keep
this mathematics as simple as possible, and indeed it involves no more than
elementary algebra. We must first set up a hypothetical betting situation in which
the rate at which Mr B is prepared to bet on E (his betting quotient on E) can be
taken as a measure of his degree of belief in E. Then we introduce the condition of
coherence. It will be clear that Mr B ought to choose his betting quotients in order
to be coherent, and this leads to the main result (The Ramsey–De Finetti Theorem),
which states that a set of betting quotients is coherent if and only if they satisfy the
axioms of probability. I will state the axioms of probability in full and then prove
the Ramsey–De Finetti theory for each one. In this way the foundations of the
mathematical theory of probability will be established from the subjective point of
view.

Definition of betting quotients (q)

We imagine that Ms A (a psychologist) wants to measure the degree of belief of
Mr B in some event E.2 To do so, she gets Mr B to agree to bet with her on E under
the following conditions. Mr B has to choose a number q (called his betting quotient
on E), and then Ms A chooses the stake S. Mr B pays Ms A qS in exchange for S if
E occurs. S can be positive or negative, but |S| must be small in relation to Mr B’s
wealth. Under these circumstances, q is taken to be a measure of Mr B’s degree of
belief in E.

A number of comments on this definition are in order. First of all it is important
that Mr B does not know when choosing q whether the stake S will be positive
(corresponding to his betting in favour of the event E occurring) or whether S will
be negative (corresponding to his betting against E). If Mr B knew that S would be
positive, it would be in his interest to choose q as low as possible. If he knew S
would be negative, it would be in his interest to choose q as high as possible. In
neither case would q correspond to his true degree of belief. However, if he does
not know whether S is going to be positive or negative, he has to adjust q to his
actual belief.

We can illustrate this by a hypothetical example from the stock market. Suppose
Mr B is now a jobber, and I want to find out what he thinks to be the value of a
particular share (BP say). If I say to him: ‘I want to sell 100 BP shares, what do
you think their value is?’, it will be in Mr B’s interest to quote a value rather below
what he thinks to be the correct one, since in this way he can hope to pick up some
BP shares cheaply. Conversely, if I say to him:‘I want to buy 100 BP shares, what
do you think their value is?’, it will be in Mr B’s interest to quote a value rather
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above what he thinks to be the correct one, since in this way he can hope to sell
some BP shares at a good profit. If, however, I ask Mr B’s opinion as to the value
of a BP share without saying whether I want to buy or sell, he will be forced to
state his true opinion as to the value. Of course, this is only a hypothetical example
to illustrate the point. In actual stock market practice, jobbers quote one price for
buying and one for selling.

My next point concerns the way in which the magnitude of the stake S is
measured, for here there is a difference between De Finetti (at least in his early
papers) and Ramsey. De Finetti took the stakes to be in money, whereas Ramsey
developed a theory of utility and took the stakes to be in utility as he had defined it.
My own preference is for De Finetti’s early approach, i.e. stakes in money, and I
will now briefly discuss some of the issues involved.

If the bets are to be in money, then it is obvious that the sums used should not be
too large – at least in relation to Mr B’s fortune. Suppose Mr B’s entire savings
amount to £500. Then it would not be reasonable for Ms A to propose a bet with
him on whether it will rain tomorrow with a stake of £500. On the other hand, if
Mr B happens to be a billionaire, a stake of £500 might not be unreasonable,
provided Ms A’s research grant can cover bets of this magnitude.

Ramsey thinks that difficulties of this sort constitute a serious objection to
money bets, for he writes: ‘... if money bets are to be used, it is evident that they
should be for as small stakes as possible. But then again the measurement is
spoiled by introducing the new factor of reluctance to bother about trifles.’
(1926:176). It seems to me, however, that this difficulty can be overcome. Ms A
has to choose a size of stake which is small enough in relation to Mr B’s fortune
so that the bet will not damage him financially but which is large enough to
make him think seriously about the bet. I think that it would, in general, be
possible to find such a level for the stakes, especially as we have to imagine Mr
B as co-operating with the psychological experiment of trying to measure his
degree of belief. If Mr B were totally averse to such an experiment, it would
hardly be possible to carry it out.

Although there do not seem to me any major objections to money bets, I regard
the introduction of a satisfactory measure of utility as a virtually impossible task.
We can see some of the difficulties by giving a few quotations which illustrate
Ramsey’s own procedure. Ramsey writes:

Let us call the things a person ultimately desires ‘goods’, and let us at first
assume that they are numerically measurable and additive. That is to say that
if he prefers for its own sake an hour’s swimming to an hour’s reading, he
will prefer two hours’ swimming to one hour’s swimming and one hour’s
reading. This is of course absurd in the given case but this may only be
because swimming and reading are not ultimate goods, and because we cannot
imagine a second hour’s swimming precisely similar to the first, owing to
fatigue, etc.

(1926:173–4)
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I find it hard to believe that there is any satisfactory way of comparing the utility of
an hour’s swimming with that of an hour’s reading. Both can give considerable
pleasure, but the pleasures are of quite a different kind and so incomparable. Ramsey
thinks that this difficulty can be overcome by introducing ‘ultimate goods’. But
what are these ultimate goods? No ultimate good is ever specified, and such a
thing would appear to be a myth rather than a reality.

At another stage of his introduction of utility, Ramsey writes: ‘... we could, by
offering him options, discover how he placed in order of merit all possible courses
of the world. In this way all possible worlds would be put in an order of value’
(1926:176). Such a procedure seems to belong to the realm of pure fantasy. Compare
it with the realistic possibility of betting for a stake of £1 on whether it will rain
tomorrow.

It might be objected that these arguments are directed just against Ramsey’s
way of introducing measurable utility, and that other more satisfactory methods
might be available. Yet other methods involve similar difficulties and often lead to
curious paradoxes which are difficult to resolve. Surely it is better to avoid this
minefield and just consider money bets made with appropriate stakes. This latter
procedure, far from belonging to the realm of fantasy can easily be carried out in
practice. Indeed, De Finetti used to get his class of students to produce betting
quotients on the results of Italian football games. Being of a democratic turn of
mind, he invited the porter to participate as well, and the porter was nearly always
the most successful. He knew more than anyone else about football.

A further objection to the betting scheme might be that it produces only very
rough estimates and hardly exact numerical probabilities. De Finetti’s reply to this
point is that exact numerical degrees of belief are indeed something of a fiction or
idealisation, but that this idealisation is a useful one in that it simplifies the
mathematical calculations. Moreover, provided we do not forget that the
mathematics must be understood as holding approximately, this idealisation does
no harm. As De Finetti himself says:

... if you want to apply mathematics, you must act as though the measured
magnitudes have precise values. This fiction is very fruitful, as everybody
knows; the fact that it is only a fiction does not diminish its value as long as
we bear in mind that the precision of the result will be what it will be.... To
go, with the valid help of mathematics, from approximate premises to
approximate conclusions, I must go by way of an exact algorithm, even
though I consider it an artifice.

(1931a:204)

My own conclusion then is that we should use the betting scheme with money
bets and appropriately selected stakes, and that this does indeed give a reasonable
method for measuring belief in many situations. I therefore adhere to the approach
of the early De Finetti. Curiously, however, De Finetti in his later period moved
in the direction of using utility, and in his last papers even abandoned the
betting approach altogether. In 1957 De Finetti still hesitated to follow Savage
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in trying to unify probability and utility within decision theory (see quotation
in Galavotti 1989:240). However, in 1964 in a new footnote to his 1937 paper he
wrote: ‘Such a formulation could better, like Ramsey’s, deal with expected
utilities’ (p. 102). In his 1970 book he used mainly decision theory to introduce
subjective probabilities. He also develops a theory of utility, even though he
still seems to regard this with some degree of scepticism (see De Finetti 1970:76–
82). In one of his very last papers, he went as far as to repudiate the whole betting
approach as inadequate, writing: ‘... betting, strictly speaking, does not pertain
to probability but to the Theory of Games ... It is because of this that I invented
and applied in experiments (probabilistic forecasts) the “proper scoring rules”’
(De Finetti 1981b:55). Thus, De Finetti himself moved in the direction of decision
theory and utilities. However, for reasons already given, my own preference is
for De Finetti’s earlier approach, and this is what I will use as the basis of the
account which follows.3

The first problem in the subjective approach was how to measure degrees of
belief. We have seen how the betting scheme offers a reasonable solution to this
problem. Mr B’s degree of belief in E is measured by his betting quotient in E as
elicited in the situation described above. It is worth noting that this way of
introducing probabilities is in accordance with the philosophy of operationalism.
A recent important contribution to subjective probability is Lad (1996). In this
book, Lad provides a foundation for subjective probability similar to De Finetti’s
but goes beyond De Finetti by showing in detail how statistics can be developed
from this point of view. In the title of his book and throughout the book itself,
Lad speaks of ‘operational subjective statistical methods’, which emphasises
the point that subjective probability is based on operationalism. Lad writes: ‘An
operationally defined measurement is a specified procedure of action which,
when followed, yields a number.’ (1996:39). It is clear that the measurement of
degrees of belief by betting quotients as just described is an operationally defined
measurement in this sense. We shall return to this connection between subjective
probability and operationalism from time to time in what follows.

Let us now examine a second problem which arises in the subjective approach.
If the subjective theory is to provide an interpretation of the standard mathematical
theory of probability, then these degrees of belief (or betting quotients) ought to
satisfy the standard axioms of probability. But why should they do so? It seems
easy to imagine an individual whose degrees of belief are quite arbitrary and do
not satisfy any of the axioms of probability. The subjectivists solve this problem
and derive the axioms of probability by using the concept of coherence. I will
next define this concept and then comment on its significance.

Coherence

If Mr B has to bet on a number of events E1, ..., En, his betting quotients are said to
be coherent if and only if Ms A cannot choose stakes S1, ..., Sn such that she wins
whatever happens. If Ms A can choose stakes so that she wins whatever happens,
she is said to have made a Dutch book against Mr B.
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It is taken as obvious that Mr B will want his bets to be coherent, that is to say
he will want to avoid the possibility of his losing whatever happens. Surprisingly,
this condition is both necessary and sufficient for betting quotients to satisfy the
axioms of probability. This is the content of the following theorem.

The Ramsey–De Finetti theorem

A set of betting quotients is coherent if and only if they satisfy the axioms of
probability.

So far we have made a contrast between the logical theory, in which probability
is degree of rational belief, and the subjective theory, in which probability is degree
of belief. The concept of coherence shows that this needs a little qualification,
since coherence is after all a rationality constraint, and degrees of belief in the
subjective approach must be rational, at least to the extent of satisfying this
constraint. De Finetti expresses this very well in the title of his 1937 paper
‘Foresight: Its Logical Laws, Its Subjective Sources’. The logical laws here come
from the condition of coherence. Naturally, coherence does not determine a single
degree of rational belief but leaves open a wide range of choices. Thus some
subjective sources for probability are also needed.

Ramsey uses the term ‘consistency’ for coherence, and writes that: ‘... the laws
of probability are laws of consistency’ (1926:182). The idea here is that we have to
make sure that our various degrees of belief fit together and so avoid the
‘contradiction’ of having a Dutch book made against us. The term ‘coherence’ is
now generally preferred, because consistency has a well-defined but different
meaning in deductive logic. Even though there is an analogy, it seems better to use
different terms. I will now give a detailed proof of the Ramsey–De Finetti theorem.
First I will state the axioms of probability and then prove the theorem for each of
them in turn.

The axioms of probability

Let E, F, ..., E1, ... stand for events, concerning which we can have some degree of
belief whether they will occur, or have occurred. Let Ω denote the certain event,
which must occur. There are then three axioms of probability.

1 0 ≤ P(E) ≤ 1 for any E, and P(Ω) = 1.
2 (Addition Law) If E1, ..., En are events which are exclusive (i.e. no two can

both occur) and exhaustive (i.e. at least one must occur), then

P(E1) + ... + P(En) = 1

3 (Multiplication Law) For any two events E, F

P(E & F) = P(E | F) P(F)
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The Addition Law can be stated in a different but equivalent form. For any event
E, F, let E v F be the event that either E occurs or F occurs or both occur. Then we
have

2' (Alternative form of the Addition Law) If E, F are any two exclusive events,
then

P(E) + P(F) = P(E v F)

We can prove the equivalence of 2 and 2' as follows:

(a) (2 → 2') Let E, F be exclusive events, and let Ω \ (E v F) be the event that
something other than E or F occurs. E, F, Ω \ (E v F) are exclusive and
exhaustive events. So by Axiom 2

P(E) + P(F) + P(Ω \ (E v F)) = 1

But E v F, Ω\ (E v F) are also exclusive and exhaustive events. So by Axiom 2

P(E v F) + P(Ω \ (E v F)) = 1

Thus subtracting, we get

P(E) + P(F) = P(E v F) i.e. Axiom 2'

(b) (2' → 2) We first prove by induction that Axiom 2' holds for any n exclusive
events. The case n = 2 is just Axiom 2' itself. Suppose the result holds for n -
1, i.e. if E1, ..., E n - 1 are any exclusive events, then

P(E1) + ... + P(En - 1) = P(E1 v ... v En - 1)

Now consider n exclusive events E1, ..., En. The events (E1 v ... v En - 1), En are
also exclusive. So by Axiom 2'

P(E1 v ... v En - 1) + P(En) = P(E1 v ... v En)

But since E1, ..., En - 1 are exclusive events, it follows that

P(E1) + ... + P(En) = P(E1 v ... v En)

But if E1, ..., En are exhaustive as well as exclusive, E1 v ... v En is the certain
event with probability 1, and so Axiom 2 follows.

Proof of the Ramsey–De Finetti theorem 4

Proof for Axiom 1

(a) Coherence → Axiom 1: Let us first consider the case of the certain event O. If
Mr B chooses q(Ω) > 1, Ms A can win by choosing S > 0. If Mr B chooses
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q(Ω) < 1, Ms A can win by choosing S < 0. Hence to be coherent, Mr B must
choose q(Ω) = 1. Now take any arbitrary event E. If Mr B chooses q(E) > 1,
Ms A can win by choosing S > 0. If Mr B chooses q(E) < 0, Ms A can win by
choosing S < 0. Hence to be coherent, Mr B must choose 0 = q(E) = 1.

(b) Axiom 1 → coherence: If Mr B chooses q(Ω) = 1, there is no way that Ms A
can win, since the stake, whatever its sign, is simply passed from one to the
other and then back again. For an arbitrary event E, Ms A cannot choose the
sign or size of S so that she always wins if Mr B chooses 0 = q(E) = 1.

Proof for Axiom 2

(a) Coherence → Axiom 2: Suppose Mr B chooses betting quotients q1, ..., qn,
and Ms A chooses stakes S1, ..., Sn. Then, if event Ei occurs, Ms A’s gain Gi is
given by

Gi = q1S1 + ... + qnSn - Si (4.1)

So if Ms A sets S1 = S2 = ... = Sn = S, then

Gi = S(q1 + ... + qn - 1)

Thus, if Mr B chooses q1 + ... + qn > 1, then Ms A can always win by setting
S > 0. If Mr B chooses q1 + ... + qn < 1, then Ms A can always win by setting
S < 0. Hence, to be coherent, Mr B must choose q1 + ... + qn = 1.

(b) Axiom 2 → coherence: Since Axiom 2 holds, we have q1 + ... + qn = 1. Now
by Equation 4.1 above, we have

qiGi = qi(q1S1 + ... + qnSn) - qiSi

So summing over i, we get

q1G1 + q2G2 + ... + qnGn = 0 (4.2)

Equation 4.2 shows that the Gi cannot all be positive for the following reason.
The qi = 0, and, since they sum to 1, at least one of them must be > 0. Hence
if all the Gi were > 0, q1G1 + ... + qnGn > 0, which contradicts Equation 4.2.
Hence, not all the Gi can be positive, which is equivalent to saying that the
betting quotients are coherent. The consideration of q1G1 + q2G2 + ... + qnGn

may look like a mathematical trick, but in fact it has a simple intuitive meaning.5

It is just Ms A’s expected gain relative to the probabilities chosen by Mr B. If
this expected gain is zero, Ms A cannot make a Dutch book against Mr B.

To prove the Ramsey–De Finetti theorem for Axiom 3, we need the
following definition.
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Definition of conditional betting quotient

q(E | F), the conditional betting quotient for E given F, is the betting quotient
which Mr B would give for E on the understanding that the bet is called off and all
stakes returned if F does not occur.

Ramsey remarks that ‘Such conditional bets were often made in the eighteenth
century.’ (1926:180).

Proof for Axiom 3

In all parts of the proof, we shall use the following notation

q = q(E & F)
q′ = q(E | F)
q″ = q(F)

(a) Coherence → Axiom 3, using determinants: Suppose Mr B chooses betting
quotients q, q′, q″ as above, and Ms A chooses corresponding stakes S, S′, S″.
Three possible cases can occur, and we shall calculate Ms A’s gain in each
case.

1 E and F both occur

G1 = (q - 1) S + (q′ - 1)S′ + (q″ - 1) S″

2 E does not occur, but F occurs

G2 = qS + q′S′ + (q″ - 1) S″

3 F does not occur

G3 = qS +    + q″S″

For fixed G1, G2, G3 > 0, these are three linear equations in three unknowns,
S, S′, S″. Thus, they always have a solution, unless the determinant vanishes. So,
for coherence, we must have

Subtracting the bottom row from the top two rows, and then the middle row from
the top row gives
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Then expanding by the first row, we get

- q′q″ + q = 0
So q = q′q″     as required.

For those unfamiliar with the theory of determinants, the following gives a
proof of the same result without using determinants.

(b) Coherence → Axiom 3, without using determinants: Suppose Ms A chooses
S = +1, S′ = -1, S″ = -q′, we then have

G1 = (q - 1) + (1 - q′) + q′ - q′q″ = q - q′q″
G2 = q - q′ - q′q″ + q′ = q - q′q″
G3 = q - q′q″

So all Ms A’s gains are positive, unless q ≤ q′q″.
Similarly, if Ms A chooses S = -1, S′ = +1, S″ = q′, all her gains are

positive unless q ≥ q′q″. So, to be coherent, Mr B must choose q = q′q″, as
required.

(c) Axiom 3 → coherence: We have to show that if q = q′q″, the betting quotients
are coherent, i.e. Ms A’s gains G1, G2, G3 cannot all be positive. Using the
method employed for Axiom 2, we need to consider Ms A’s expected gain
given the probabilities chosen by Mr B, and then show that it is zero. Ms A’s
expected gain is in fact λ1G1 + λ2G2 + λ3G3 where

λ1 = q′q″, λ2 = (1 - q′)q″, λ3 = 1 - q″. Since 0 ≤ q′, q″ ≤ 1, each λi ≥ 0.

Now

λ1G1 + λ2G2 + λ3G3 = αS + βS′ + γS″,

where

α = q′q″(q - 1) + (1 - q′)q″q + (1 - q″) q

= q″(q′q - q′ + q - qq′ + (1 - q″)q′), since q = q′q″
= q″(q′q - q′ + q′q″ - qq′ + q′ - q′q″)

= 0
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β = q′q″(q’ - 1) + (1 - q′)q″q′ = 0

γ = q′q″(q″ - 1) + (1 - q′)q″(q″ - 1) + (1 - q″)q″ = 0

Hence λ1G1 + λ2G2 + λ3G3 = 0.

But now at least one of the λi > 0, for either q″ ≠ 1, when λ3 > 0, or q″ = 1, when
λ1 = q′, λ2 = 1 - q′. In this case, either q′ ≠ 1, when λ2 > 0, or q′ = 1,
when λ1 > 0. It follows that not all the Gi can be positive, and so Mr B’s betting
quotients are coherent, as required.

The Ramsey–De Finetti theorem is a remarkable achievement, and clearly
demonstrates the superiority of the subjective to the logical theory. Whereas in
the logical theory the axioms of probability could only be justified by a vague
and unsatisfactory appeal to intuition, in the subjective theory they can be proved
rigorously from the eminently plausible condition of coherence. Indeed, given
the Ramsey–De Finetti theorem, it is difficult to deny that the subjective theory
provides a valid interpretation of the mathematical calculus of probability – though
it is of course possible to hold that there are other valid interpretations of this
calculus. In addition, the subjective theory solves the paradoxes of the Principle
of Indifference by, in effect, making this principle unnecessary, or at most a
heuristic device. In the logical theory, the principle was necessary to obtain the
supposedly unique a priori degrees of rational belief, but, according to the
subjective theory, there are no unique a priori probabilities. Different individuals
can choose their a priori probabilities in different ways, and, provided they are
coherent, there need be nothing wrong with these different choices. Thus, if the
Principle of Indifference is used as a heuristic device, and suggests two different
possibilities for the a priori probabilities, there is no contradiction. Mr B might
choose one of these possibilities as his subjective valuation, and Ms D might
choose the other. Ramsey is well aware of the superiority of the subjective to the
logical theory in these respects and states them as follows:

In the first place it gives us a clear justification for the axioms of the calculus,
which on such a system as Mr Keynes’ is entirely wanting. For now it is
easily seen that if partial beliefs are consistent they will obey these axioms,
but it is utterly obscure why Mr Keynes’ mysterious logical relations should
obey them. We should be so curiously ignorant of the instances of these
relations, and so curiously knowledgeable about their general laws.

Secondly, the Principle of Indifference can now be altogether dispensed
with; ... To be able to turn the Principle of Indifference out of formal logic
is a great advantage; for it is fairly clearly impossible to lay down purely
logical conditions for its validity, as is attempted by Mr Keynes.

(Ramsey 1926:188–9)

There remain, however, some problems connected with the subjective theory, and
in particular the question of how probabilities which appear to be objective, such
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as the probability of a particular isotope of uranium disintegrating in a year, can be
explained on this approach. De Finetti tackles this problem by introducing the
concept of exchangeability, and I will give an account of this below (pp. 69– 83).
Before going on to this, however, there is a matter which may well be of interest to
mathematicians. Nearly all advanced treatments of mathematical theory of
probability are today based on the Kolmogorov axioms (see Kolmogorov 1933).
Now the axioms given above are of course similar to the Kolmogorov axioms, but
do nonetheless differ on one or two points. It certainly seems worth examining
these divergences from standard mathematical practice to see what significance
they have. In general, in this book my aim is to discuss the philosophical side of
probability using as little mathematics as possible, indeed no more than quite
elementary algebra. Sometimes, as here, however, it will be useful to discuss issues
which require a knowledge of more advanced mathematical approaches to
probability (random variables, measure theory, analysis, etc.). My plan is to place
such discussions in sections marked with an asterisk and to arrange them so that
they can be read by mathematicians but omitted by non-mathematicians without
losing the general thread of the argument.

A comparison of the axiom system given here with the
Kolmogorov axioms*

De Finetti assigns probabilities to events E, F, ..., including the certain event which
we have denoted by Ω. In Kolmogorov’s mathematical approach, probabilities are
assigned to the subsets of a set Ω. This difference does not seem to me an important
one, since it would be fairly easy to map De Finetti’s treatment into set-theoretic
language. A more significant divergence comes with the treatment of conditional
probabilities. Kolmogorov introduces these by definition (see Kolmogorov 1933:6),
so that

The case P(F) = 0 is dealt with by Kolmogorov later in his monograph (1933:Chapter
V). Thus, in Kolmogorov’s treatment an equality is established by definition which
in the treatment we have just given is a substantial axiom (Axiom 3) requiring an
elaborate proof, and is indeed the multiplication law of probability.

In fact, this is not the only instance in mathematics where a substantial
assumption appears in the form of a definition, but the practice does not seem to
me a good one. I would argue that it is better to state important assumptions as
axioms (or derive them as theorems) and try to keep definitions as far as possible
as mere abbreviations. This inclines me to prefer De Finetti’s treatment to
Kolmogorov’s on this point. This would amount to taking P(E | F) as a primitive
(undefined) term in the axiom system and characterising it by an axiom, rather
than introducing it by an explicit definition.
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It is clear that De Finetti’s approach is more natural for the subjective theory,
since conditional probabilities can be introduced as conditional betting quotients
defined within a particular betting scheme. It is then by no means obvious that
these conditional betting quotients obey our Axiom 3; indeed the proof is quite
long. Moreover, similar considerations apply in the other interpretations of
probability. We have seen in Chapter 3 that the notion of the conditional probability
of h given e is a primitive and fundamental notion within the logical theory. It thus
seems natural to take it as a primitive notion in an axiom system, as Keynes does.
As we shall see in Chapters 5 and 6, the notion of conditional probability is also
primitive in the frequency and propensity interpretations. On this point I side with
De Finetti rather than Kolmogorov, and I favour the introduction of conditional
probabilities by an axiom rather than a definition. This, moreover, leads to a rather
elegant symmetry in the axiomatic treatment between the addition and multiplication
laws of probability.

The next important difference between De Finetti and Kolmogorov concerns
the issue of finite versus countable additivity. De Finetti’s Axiom 2 (the Addition
Law) can, as we have seen, be stated in the equivalent form: if E1, ..., En are events
which are exclusive,

P(E1 v ... v En) = P(E1) + ... + P(En).

The question now arises whether we can extend the Addition Law from the finite
case to the countably infinite case, that is to say whether we can legitimately go
from finite additivity to countable additivity. This would involve adopting as an
axiom the following stronger form of the Addition Law.

Addition law for countable additivity: If E1, ..., En, ... is a countably infinite
sequence of exclusive events, then

P(E1 v ... v En v ...) = P(E1) + ... + P(En) + ...

Kolmogorov’s treatment of this question is interesting. In the first chapter of his
monograph he allows only finite additivity. Then in the second chapter he adds to
his five previous axioms a sixth axiom (the axiom of continuity) which is equivalent
to the Addition Law for countable additivity as just stated. Kolmogorov does,
however, appear to have some reservations about his axiom, for he says:

Since the new axiom is essential for infinite fields of probability only, it is
almost impossible to elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I – V in §2 of the first chapter. For, in
describing any observable random process we can obtain only finite fields
of probability. Infinite fields of probability occur only as idealised models
of real random processes. We limit ourselves, arbitrarily, to only those models
which satisfy Axiom VI. This limitation has been found expedient in researches
of the most diverse sort.
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Kolmogorov here argues that countable additivity goes beyond what can be
checked empirically, but that its adoption is nonetheless justified because of its
usefulness in a whole range of research.

De Finetti shares Kolmogorov’s doubts about countable additivity, but he regards
them as a reason for limiting oneself to finite additivity.6 Thus he says that:

[The assumption of countable additivity] is the one most commonly accepted
at present; it had, if not its origin, its systematization in Kolmogorov’s axioms
(1933). Its success owes much to the mathematical convenience of making
the calculus of probability merely a translation of modern measure theory....
No-one has given a real justification of countable additivity (other than just
taking it as a ‘natural extension’ of finite additivity).

(1970:vol. 1, 119)

De Finetti, however, thinks that one should not introduce new axioms simply on
the grounds of mathematical convenience, unless these axioms can be justified in
terms of the meaning of probability. Now in the subjective theory, probabilities are
given by an individual’s betting quotients. A given individual will always bet on a
finite number of events, and it is difficult to imagine bets on an infinite number of
events. Thus the subjective theory would seem to justify finite, but not countable,
additivity. De Finetti gives a number of other arguments in favour of finite additivity
and against countable additivity. We shall here consider one more of these.

If we adopt countable additivity, then it becomes impossible to have a uniform
distribution over a countable set, such as the positive integers {1, 2, ..., n, ...}.
For suppose we put P(i) = p for all i. If p > 0, then P(1) + P(2) + ... + P(n) + ...
becomes infinite, whereas by the axioms of probability it should be = 1. If we
put P(i) = 0 for all i, then by countable additivity P({1, 2, ... , n, ...}) = P(1) +
P(2) + ... + P(n) + ... = 0, whereas, by Axiom 1, P({1, 2, ..., n, ...}) = P(O) = 1.
However, if we adopt only finite additivity, then the second half of the argument
is blocked, so that it becomes possible to have a uniform distribution over the
positive integers. De Finetti regards it as a counterintuitive feature of the axiom
of countable additivity that it prevents us from having such uniform distributions.
After all, for any finite n, however large, we can introduce a uniform distribution
over the positive integers 1, 2, ..., n by setting P(i) = 1/n, i = 1, ..., n. However, if
we postulate countable additivity over the infinite collection of positive integers
1, 2, ..., n, ..., we can only have what he terms ‘extremely unbalanced partitions’
(1970:Vol. 1, 122). He explains his meaning here more fully later on when he
says that countable additivity: ‘forces me to choose some finite subset of them
[i.e. the countable class in question, e.g. the positive integers] to which I attribute
a total probability of at least 99% (leaving 1% for the remainder; and I could
have said 99.999% with 0.001% remaining, or something even more extreme).’
(1970:Vol. 2, 351) This argument does not perhaps go very well with the previous
argument which suggests that on the subjective approach one should always
limit oneself to finite collections of events and not consider probability
distributions over countable sets at all.
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Not all probabilists agree with De Finetti’s attitude to countable additivity
within the subjective theory. Adams (1964) presented a proof that countable
additivity does follow from the assumptions of the subjective approach. This
proof has been considerably simplified by Williamson (1999), which also
discusses the philosophical problems involved. Williamson devises a betting
situation in which it would seem quite reasonable to bet on a countable number
of events. Suppose Ms A tells Mr B that in a sealed parcel in the next room there
is the computer print-out of a positive integer, and asks him to give a betting
quotient on this number being n for all n. Now of course Mr B would realise that
the practicalities of technology must impose some upper bound on the value
which the hidden number could take. However, this upper bound is hard to
determine, and the problem is a very open-ended one. Rather than fix on a
particular upper bound, it would be easier for Mr B to produce an infinite sequence
of betting quotients. Actually, the infinite is often brought into applied
mathematics for exactly this kind of reason.

A noteworthy feature of this example is that a uniform distribution is highly
implausible. On the contrary, we would expect small numbers to be more probable
than very large ones. In general, in any betting situation in which we approximate
the large open-ended finite by the infinite, the unbalanced distributions described
by De Finetti, far from being counterintuitive, are just what we would expect.

Williamson’s other point is that, once we have introduced a betting scheme
for a countably infinite number of events, it only requires one extra condition to
derive the axiom of countable additivity by exactly the same Dutch book argument
which De Finetti uses for finite additivity. This extra condition is that only a
finite amount of money should change hands. Assuming this, let us see how the
proof of Axiom 2 must be modified if we have, instead of a finite number of
events E1, ..., En, a countably infinite number E1, ..., En, .... Because only a finite
amount of money should change hands, Ms A’s gains Gi must all be finite, which
means in turn that the series q1S1 + ... + qnSn + ... must converge. Moreover, from
Axiom 1, it follows that q1 + ... + qn + ... ≤ 1. If in the proof of Axiom 2 given
above, we replace the finite sums by infinite series, then, using the above results,
all the series converge, and the proof goes through just as before. So, if we allow
bets over a countable infinity of events (as seems eminently reasonable in the
kind of situation described above), and if we specify that only a finite amount of
money should change hands (which can hardly be avoided), then the axiom of
countable additivity does follow rigorously from exactly the same Dutch book
argument which De Finetti uses to establish finite additivity. This argument of
Williamson’s seems to me to show that countable additivity is completely justified
within the subjective theory, and that De Finetti was wrong to deny it.

This result seems to me to strengthen rather than weaken the subjective theory.
On De Finetti’s approach, mathematicians who adopted the subjective theory of
probability would have to use a mathematical theory somewhat different from the
standard one. Many would surely regard this as an argument against becoming a
subjectivist. Williamson’s argument shows that such doubts are quite unnecessary,
and that it is perfectly possible both to be a subjectivist and to use the standard
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mathematical theory. Moreover, as Williamson points out, countable additivity
strengthens the subjective theory as against the logical theory. Suppose we were
betting on a countably infinite sequence of events E1, E2,..., En, ..., and suppose we
had no reason to prefer Ei to Ej for all i, j, then the logical theory with its Principle
of Indifference would seem to require a uniform distribution. Countable additivity
forces a skew distribution on us, thus preventing a logical interpretation and
introducing a subjective element. So, ironically, De Finetti’s defence of a uniform
distribution in this context is more of a defence of the logical view than of his own
subjective approach.

Apparently objective probabilities in the subjective theory:
exchangeability

So far the subjective theory has had considerable success. Starting from the
analysis of probability as the degree of belief of an individual, it has shown how
such degrees of belief can be measured, and how from the simple and plausible
condition of coherence the standard mathematical axioms of probability can be
derived. All this establishes beyond doubt that subjective probabilities are at
least one of the valid interpretations of the mathematical calculus. Moreover,
there are a number of situations where the subjective analysis of probability
looks highly plausible. Examples would be the probability of it raining tomorrow,
the probability that a particular party will win the next election or the probability
of a particular horse winning a race. Such probabilities can plausibly be said to
be subjective, or at least to involve a considerable subjective component. Yet
there are other probabilities which do seem, at first sight at least, to be completely
objective. Suppose we have a die which is shown by careful tests to be perfectly
balanced mechanically, and which in a series of trials has given approximately
the same frequency for each of its faces. Surely for such a die P(5) = 1/6, and this
is an objective fact, not a matter of subjective opinion. Then again consider the
probability of a particular isotope of uranium disintegrating in a year. This is
surely not a matter of opinion, but something which can be calculated from
quantities specified in textbooks of physics. Such a probability looks every bit
as objective as, for example, the mass of the isotope. How is a supporter of the
subjective theory of probability to deal with cases of this sort?

Actually there are two possible approaches. First of all, it could be admitted
that the examples we have cited, and others like them, are indeed objective, and
consequently that there are at least two different concepts of probability which
apply in different circumstances. This was the position which Ramsey (1926)
adopted, and I will discuss it in Chapter 8. Second, however, it could be claimed
that all probabilities are subjective, and that even apparently objective
probabilities, such as the ones just described, can be explicated in terms of degree
of subjective belief. This was the line adopted by De Finetti, and I will next
consider his argument in detail.

De Finetti states the problem as follows:
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It would not be difficult to admit that the subjectivistic explication is the
only one applicable in the case of practical predictions (sporting results,
meteorological facts, political events, etc.) which are not ordinarily placed
in the framework of the theory of probability, even in its broadest
interpretation. On the other hand it will be more difficult to agree that this
same explanation actually supplies rationale for the more scientific and
profound value that is attributed to the notion of probability in certain classical
domains, ...

(1937:152)

Nonetheless, De Finetti does think that the subjective account of probability is
adequate even in these ‘classical domains’, for he continues:

Our point of view remains in all cases the same: to show that there are
rather profound psychological reasons which make the exact or approximate
agreement that is observed between the opinions of different individuals very
natural, but that there are no reasons, rational, positive, or metaphysical,
that can give this fact any meaning beyond that of a simple agreement of
subjective opinions.

(1937:152)

Let us now see how De Finetti works out this view by taking a simple example.
Suppose we have a coin which is known to be biased, but for which the extent of
the bias is not known. An objectivist would say that there is a true, but unknown,
probability p of heads, and that we can measure p roughly by making n tosses (for
large n), observing the number r of heads and setting p ≈ r/n. The exact relation
between p and r/n will depend on the particular objective theory adopted.

How then does a subjectivist like De Finetti deal with this case? The first step is
to consider a sequence of tosses of the coin which we suppose gives results: E1, ...,
En, ..., where each Ei is either heads (Hi) or tails (Ti). So, in particular, Hn + 1 =
Heads occurs on the n + 1th toss. Further, let e be a complete specification of the
results of the first n tosses, that is a sequence n places long, at the ith place of
which we have either Hi or Ti. Suppose that heads occurs r times on the first n
tosses. The subjectivist’s method is to calculate P(Hn + 1 | e), and to show that under
some general conditions which will be specified later P(Hn + 1 | e) tends to r/n for
large n. This shows that whatever value is assigned to the prior probability P(Hn +
1), the posterior probability P(Hn + 1 | e) will tend to the observed frequency for
large n. Thus, different individuals who may hold widely differing opinions initially
will, if they change their probabilities by Bayesian conditionalisation, come to
agree on their posterior probabilities. The objectivist wrongly interprets this as
showing that there is an objective probability, but, according to De Finetti, ‘objective
probability’ is a metaphysical concept devoid of meaning. All that is happening is
that, in the light of evidence, different individuals are coming to agree on their
subjective probabilities. Such is the argument. Let us now give, in our simple case,
the mathematical proof which underpins it.
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Suppose that P(Ei) ≠ 0 for all i, so that also P(e) ≠ 0. We then have by Axiom 3

(4.3)

To proceed further we introduce the condition of exchangeability. Suppose Mr B
is making an a priori bet that a particular n-tuple of results (Ei1 Ei2 ... Ein say)
occurs. Suppose further that heads occurs r times in this n-tuple. Mr B’s betting
quotients are said to be exchangeable if he assigns the same betting quotient to any
other particular n-tuple of results in which heads occurs r times, where both n and
r can be chosen to have any finite integral non-negative values with r ≤ n. Let us
write his prior probability (or betting quotient) that there will be r heads in n tosses
as ωr

(n). There are nCr different ways in which r heads can occur in n tosses, where,
as usual,nCr = n!/(n - r)! r! = n(n - 1) ... (n - r + 1)/r(r - 1) ... 1. Each of the
corresponding n-tuples must, by exchangeability, be assigned the same probability,
which is therefore ωr

(n)/nCr. Thus

(4.4)

Now e, by definition, is just a particular n-tuple of results in which heads occurs r
times. Thus, by exchangeability,

(4.5)

Now Hn + 1 & e is an (n + 1)-tuple of results in which heads occurs r + 1 times.
Thus, by the same argument,

(4.6)

And so, substituting in Equation 4.3, we get

(4.7)



72 The subjective theory

Equation 4.7 gives us the result we want. Provided only ωr + 1 
(n + 1)/ ωr

(n) → 1 as n
→∞ (a very plausible requirement), we may choose our prior probabilities ?r

(n) in
any way we please, and still get that as n → ∞, P(Hn + 1 | e) → r/n (the observed
frequency), as required.

To sum up then: according to the objectivist, there is a real objective probability
p of heads, and the observed frequency r/n gives an increasingly better estimate of
p as n → ∞.

According to the subjectivist, the ‘real objective probability p’ is a metaphysical
delusion. Different people may, subject only to coherence, have different prior
probabilities P(Hn + 1). However, coherence + exchangeability + one other plausible
assumption (ωr + 1 (n + 1)/ωr

(n) → 1, as n → ∞) ensure that P(Hn + 1 | e) → r/n as n →
∞. Thus, as the evidence piles up, the people who disagree a priori will come to
agree a posteriori. This ‘exact or approximate agreement between the opinions of
different individuals for rather profound psychological reasons’ is what gives rise
to the illusion of objective probabilities.

In n tosses, we can have either 0, 1, 2, ..., or n heads. So, by coherence,

ω0
(n) + ω1

(n) + ω2
(n) + ... + ωr

(n) + ... + ωn
(n) = 1 (4.8)

In the subjective theory, we can choose the ωr
(n) (the prior probabilities) in any way

we choose subject only to Equation 4.8. However, we can also, though this is not
compulsory, make the ‘Principle of Indifference’ choice of making them all equal
so that

ωo
(n) = ω1

(n) = ω2
(n) =... = ωr

(n) = ... = ωn
(n) = 1/(n + 1) (4.9)

Substituting this in Equation 4.7, we get

(4.10)

This is a classical result – Laplace’s Rule of Succession.
The Rule of Succession has been used to try to solve Hume’s problem of

induction. Suppose, having read Hume, we are worried about whether the Sun
will rise tomorrow. Now recorded history goes back at least 5,000 years, and the
Sun has been observed (in the appropriate latitudes) to rise every single morning
during all that time. At least, if the Sun had failed to rise one morning, it is a
reasonable presumption that this fact would have been recorded. So our evidence
is that the Sun has risen each morning for 1,826,250 days. To calculate the
probability of its rising tomorrow, we use Equation 4.10 with r = n = 1,826,250.
This gives the probability of the Sun’s rising tomorrow as approximately 0.9999994.
If this reasoning is correct, then we should no longer be troubled by Humean
doubts, but should be able to look forward with very great confidence to the Sun
rising tomorrow!
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But not everyone is convinced by the argument, and the Rule of Succession has
been subjected to quite a number of harsh criticisms. I will here describe one
based on an example due to Popper.7 Suppose the inhabitants of London wake up
one summer morning to find that although according to their clocks it should be
day, it is in fact still night outside. They switch on their radios and televisions and
learn that something quite extraordinary has happened. The Earth appears to have
stopped rotating. It is still night in London, while on the opposite side of the globe,
the Sun is staying fixed at one position in the sky. Of course this quite contradicts
all the known laws of physics. Moreover, apart from the strange change in the
apparent movements of the Sun, everything else seems to be continuing just as
before, a situation which again contradicts all the known laws of physics. Scientists
the world over confess that they are baffled and cannot understand what is
happening. Copies of the philosophical works of Hume are selling well.

Given this bizarre, but at least imaginable, situation, what would be the
probability of the Sun’s rising again as usual the next morning? It is easy to calculate
according to the Rule of Succession. In Equation 4.10 above, we now have r = n -
1, and n = 1,826,251. So the probability of the Sun’s rising the next day is 0.9999989.
In other words, if we stick to the Rule of Succession, the quite extraordinary events
just described would reduce the probability of the Sun’s rising the next day by
0.0000005, i.e. 5 × 10-7. Obviously this is quite wrong. There would be such a state
of confusion that no one would have the least idea of whether the Sun would rise
the next day or not. Certainly no one would assign a probability of 0.9999989 to
its doing so. This example shows that, although the Rule of Succession may give
reasonable answers in some cases, it gives absurd answers in others and so cannot
be considered valid in general. On the other hand, it is not clear what exactly is
wrong with the rather convincing chain of reasoning which was presented above
and which led to the Rule of Succession. Rather than pursue this problem
immediately, I will first present a general criticism of De Finetti’s analysis of
apparent objectivity in terms of exchangeability. This criticism casts light on why
the Rule of Succession fails so dramatically in some cases, as I will then show.

To explain my criticism of De Finetti’s exchangeability argument, I will begin
by quoting an important passage in which he describes some general features of
the argument. It is precisely these features which I will then criticise. The passage
runs as follows:

Whatever be the influence of observation on predictions of the future, it
never implies and never signifies that we correct the primitive evaluation of
the probability P(En + 1) after it has been disproved by experience and substitute
for it another P*(En + 1) which conforms to that experience and is therefore
probably closer to the real probability; on the contrary, it manifests itself
solely in the sense that when experience teaches us the result A on the first n
trials, our judgment will be expressed by the probability P(En + 1) no longer,
but by the probability P(En + 1 | A), i.e. that which our initial opinion would
already attribute to the event En + 1 considered as conditioned on the outcome
A. Nothing of this initial opinion is repudiated or corrected; it is not the
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function P which has been modified (replaced by another P*), but rather the
argument En + 1 which has been replaced by En + 1 | A, and this is just to
remain faithful to our original opinion (as manifested in the choice of the
function P) and coherent in our judgment that our predictions vary when a
change takes place in the known circumstances.

In the same way, someone who has the number 2374 in a lottery with
10,000 tickets will attribute at first a probability of 1/10,000 to winning the
first prize, but will evaluate the probability successively as 1/1000, 1/100, 1/
10, 0, when he witnesses the extraction of the successive chips which give,
for example, the number 2379. At each instant his judgment is perfectly
coherent, and he has no reason to say at each drawing that the preceding
evaluation of probability was not right (at the time when it was made).

(De Finetti 1937:146–7)

This passage puts very clearly the difference between De Finetti’s position and
that of an objectivist – particularly an objectivist with Popperian tendencies. For
such an objectivist, any evaluation P of a probability function is just a conjecture
as to the values of the real objective probabilities, and, like any conjecture it should
be severely tested. If these tests show that it is inadequate in anyway, it should be
replaced by a new conjecture P* which fits the facts better. In De Finetti’s scheme,
we do not try to test or refute our prior probabilities P(En + 1), we simply change
them into posterior probabilities P(En + 1 | A) by Bayesian conditionalisation.
Different people may start with different prior probabilities, but, as the evidence
mounts up, their posterior probabilities will tend in many circumstances to converge
producing the illusion of the existence of an objective probability.

My argument against De Finetti can be stated in general terms as follows. The
prior probability function P will in all cases be based on general assumptions
about the nature of the situation under study. Now if these assumptions are broadly
correct, then De Finetti’s scheme of modifying P by Bayesian conditionalisation
will yield reasonable results. If, however, the initial assumptions are seriously wrong
in some respects, then not only will the prior probability function be inappropriate,
but all the conditional probabilities generated from it in the light of evidence will
also be inappropriate. To obtain reasonable probabilities in such circumstances, it
will be necessary to change P in a much more drastic fashion than De Finetti
allows, and, in effect, introduce a new probability function P*. This line of thought
could be summarised as follows. De Finetti’s scheme of allowing changes only by
Bayesian conditionalisation is too conservative. Sometimes, in order to make
progress, much more drastic changes in P are needed than those which he allows.
I will give an example of such a situation in a moment. However, to explain the
general character of this example, it will be desirable to examine the relation between
the concepts of independence and exchangeability. As this involves some
technicalities I will discuss the matter in the next section. I will then give an informal
summary of the main points of this section before giving my example of a situation
in which De Finetti’s method of changing prior probabilities only by Bayesian
conditionalisation proves to be inadequate.
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The relation between independence and exchangeability*

In a certain sense the concept of exchangeability is the equivalent within the
subjective theory of the objectivist’s notion of independence. This does not mean
that the concept of independence does not apply in the subjective theory. Two
events E, F are defined to be independent, if P(E & F) = P(E) P(F). This definition
can of course be applied when the probabilities involved are given a subjective
meaning. The trouble is that while in objective approaches the assumption of
independence is a very important one which applies in many cases, independence
in the subjective sense turns out to be an assumption which can rarely, if ever, be
made. If we make the mathematical assumption of independence, giving the
probabilities an epistemological meaning, this turns out to give a case in which no
learning from experience can occur. We can see this in the context of the subjective
theory by exploring what happens if we change the assumption of exchangeability
to that of independence. This amounts to assuming that

P(Ei1 & Ei2 & ... & Ein) = P(Ei1) P(Ei2) ... P(Ein)

It follows in particular that P(Hn + 1 & e) = P(Hn + 1) P(e). Substituting this into
Equation 4.3 above, we get

P(Hn + 1 | e) = P(Hn + 1)

So within the Bayesian framework no learning from experience can occur. De
Finetti must have realised this very early on in his development of the subjective
theory for he writes:

If the outcome of the preceding trials can modify my opinion, it is for me
dependent and not independent.... If I admit the possibility of modifying my
probability judgment in response to observation of frequencies; it means
that – by definition – my judgment of the probability of one trial is not
independent of the outcomes of the others ....

(1931a:212)

In general, an individual such as our Mr B will want to modify his probability
judgements in response to observation of frequencies, and so it follows that the
assumption of independence will rarely, if ever, be made within the subjective
theory. At first sight this may seem rather a severe blow to the subjective approach,
since objectivists frequently and successfully make assumptions of independence.
This was no doubt one factor which stimulated De Finetti to invent his new concept
of exchangeability. Roughly speaking where an objectivist assumes independence,
a subjectivist will assume exchangeability. De Finetti proved a general theorem
showing how the two concepts are linked, I will next state his result.

Let us first define exchangeability for a sequence of random variables (or random
quantities as De Finetti prefers to call them) X1, ..., Xn, .... These are exchangeable
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if, for any fixed n, Xi1, Xi2, ..., Xin have the same joint distribution no matter how i1,
..., in are chosen. Now let Yn be the average of any n of the random quantities Xi,
i.e. Yn = (1/n)(Xi1 + Xi2 + ... + Xin), since we are dealing with exchangeable random
quantities it does not matter which i1, i2,..., in are chosen. De Finetti first shows
(1937: 126) that the distribution Φn(ξ) = P(Yn ≤ ξ) tends to a limit Φ(ξ) as n → ∞,
except perhaps for points of discontinuity. He goes on to say:

Indeed, let Pξ(E) be the probability attributed to the generic event E when
the events E1, E2, ..., En, ... are considered independent and equally probable
with probability ?; the probability P(E) of the same generic event, the Ei

being exchangeable events with the limiting distribution Φ(ξ), is

This fact can be expressed by saying that the probability distributions P
corresponding to the case of exchangeable events are linear combinations of
the distributions Pξ corresponding to the case of independent equiprobable
events, the weights in the linear combination being expressed by Φ(ξ).

(De Finetti 1937:128–9)

This general result can be illustrated by taking a couple of special cases. Suppose
that we are dealing with a coin-tossing example and the generic event E is that
heads occurs r times in n tosses. Then

Pξ(E) = nCr ξr (1 - ξ)n - r

So

If, in particular, F(?) is the uniform distribution, we have
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= nCr B(r + 1, n - r + 1), where B is the beta function

= 1/(n + 1)      (cf. Equation 4.9 above)

Comparing these results with our earlier calculations involving exchangeability,
we can see how exchangeability and independence are related.

De Finetti interprets these mathematical results as showing that we can eliminate
the notions of objective probability and independence (which in his view are
metaphysical in character) in favour of those of subjective probability and
exchangeability. Alternatively, we could speak of his results as a reduction of
objective probability and independence to subjective probability and
exchangeability. The idea is that when an objectivist assumes independence, and
formulates corresponding mathematical equations, a subjectivist can simply
reinterpret these equations as being about subjective probabilities and
exchangeability. This interpretation eliminates the objectivist’s metaphysical notions
and gives the real empirical meaning of the equations. I will call this argument De
Finetti’s exchangeability reduction and will criticise it in the next section.

Criticism of De Finetti’s exchangeability reduction

In the previous section, it has been shown that exchangeability is in a sense the
subjective equivalent of objective independence. De Finetti takes this to mean that
we can eliminate the objectivist’s notion of independence in favour of
exchangeability. From the objectivist’s point of view, however, the relation can be
read, so to speak, in the opposite direction as showing that we can only apply
exchangeability when the situation is objectively one of independence. However,
not all sequences of events are independent. On the contrary, there are many
situations in which the outcome of a particular event is very strongly dependent on
the outcomes of previous events. In such situations we would expect that the use
of exchangeability, and the calculations with it explained above, would give
completely erroneous results. This is indeed the case, as I will illustrate in a moment
by means of an example. My conclusion is that far from our being able to reduce
the notion of objective independence to that of exchangeability, the concept of
exchangeability is actually parasitic on that of objective independence and so
redundant. In order to use exchangeability in a way which does not lead to erroneous
and misleading results, we have first to be sure that the situation is objectively one
of independence. We can only acquire such a conviction by conjecturing that the
situation is one of independence and testing this assumption rigorously. If our
conjecture passes these tests, then we can use the exchangeability calculation
without going far wrong, but there is no need to do so, since we handle the problem
in the standard way, using independence and objective probabilities. In this case
then, exchangeability is unnecessary. If, on the other hand, our tests show that the
situation is not one of independence, then the use of exchangeability will give
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misleading results and should be avoided. In neither case therefore is there any
reason for using exchangeability.

To illustrate this argument, it would be possible to use any sequence of events
which are dependent rather than independent. I have chosen one very simple and
at the same time striking example of dependence. This is the game of red or blue.8

At each go of the game there is a number s which is determined by the previous
results. A fair coin is tossed. If the result is heads, we change s to s′ = s + 1, and if
the result is tails, we change s to s′ = s - 1. If s′ ≥ 0, the result of the go is said to be
blue, whereas if s′ < 0, the result of the go is said to be red. So, although the game
is based on coin tossing, the results are a sequence of red and blue instead of a
sequence of heads and tails. Moreover, although the sequence of heads and tails is
independent, the sequence of red and blue is highly dependent. We would expect
much longer runs which are all blue than runs in coin tossing which are all heads.
If we start the game with s = 0, then there is a slight bias in favour of blue, which
is the initial position. However, it is easy to eliminate this by deciding the initial
value of s by a coin toss. If the toss gives heads we set the initial value of s at 0, and
if the toss gives tails we set it at -1. This makes red and blue exactly symmetrical,
so that the limiting frequency of blue must equal that of red and be 1/2. It is therefore
surprising that over even an enormously large number of repetitions of the game,
there is high probability of one of the colours appearing much more often than the
other. Feller (1950:82–3) gives a number of examples of these curious features of
the game. Suppose for example that the game is played once a second for a year,
i.e. repeated 31,536,000 times. There is a probability of 70 per cent that the more
frequent colour will appear for a total of 265.35 days, or about 73 per cent of the
time, whereas the less frequent colour will appear for only 99.65 days, or about 27
per cent of the time.

Let us next suppose that two probabilists – an objectivist (Ms A) and a subjectivist
(Mr B) – are asked to analyse a sequence of events, each member of which can
have one of two values. Unknown to them, this sequence is in fact generated by
the game of red or blue. Possibly the sequence might be produced by a man-made
device which flashes either 0 (corresponding to red) or 1 (corresponding to blue)
on to a screen at regular intervals. However, it is not impossible that the sequence
might be one occurring in the world of nature. Consider for example a sequence of
days, each of which is classified as ‘rainy’ if some rain falls, or dry otherwise. In a
study of rainfall at Tel Aviv during the rainy season of December, January and
February, it was found that the sequence of days could be modelled successfully
as a sequence of dependent events. The particular kind of dependence used was
what is known as a Markov chain, that is to say the probability of a day being rainy
was postulated to depend on the weather of the previous day, but not on the weather
of days further back in the sequence. In fact, the probabilities found empirically
were probability of a dry day given that the previous day was dry = 0.75, and
probability of a rainy day given that the previous day was rainy = 0.66. (For further
details see Cox and Miller 1965:78–9.) It is clear that this kind of dependence will
give longer runs of either rainy or dry days than would be expected on the
assumption of independence. It is thus not impossible that the sequence of rainy
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and dry days at some place and season might be represented quite well by the
game of red or blue.

Let us return to our two probabilists and consider first the objectivist (Ms A).
Knowing that the sequence has a random character, she will begin by making the
simplest and most familiar conjecture that the events are independent. However,
being a good Popperian, she will test this conjecture rigorously with a series of
statistical tests for independence. It will not be long before she has rejected her
initial conjecture, and she will then start exploring other hypotheses involving
various kinds of dependence among the events. If she is a talented scientist, she
may soon hit on the red or blue mechanism and be able to confirm that it is correct
by another series of statistical tests.

Let us now consider the subjectivist Mr B. Corresponding to Ms A’s initial
conjecture of independence, he will naturally begin with an assumption of
exchangeability. Let us also assume that he gives a uniform distribution a priori to
the ωr

(n) (see Equation 4.9 above) so that Laplace’s Rule of Succession holds
(Equation 4.10). This is just for convenience of calculation. The counterintuitive
results would appear for any other coherent choice of the ωr

(n). Suppose that we
have a run of 700 blues followed by two reds. Mr B would calculate the probability
of getting blue on the next go using Equation 4.10 with n = 702 and r = 700. This
gives the probability of blue as 701/704 = 0.996 to three significant figures. Knowing
the mechanism of the game, we can calculate the true probability of blue on the
next go, which is very different. Go 700 gave blue, and go 701 gave red. This is
only possible if s on go 700 was 0, the result of the toss was tails and s became -1
on go 701. The next toss must also have yielded tails or there would have been
blue again on go 702. Thus s at the start of go 703 must be -2, and this implies that
the probability of blue on that go is zero. Then again let us consider one of Feller’s
massive sessions of 31,536,000 goes. Suppose the result is that the most frequently
occurring colour appears 73 per cent of the time (as pointed out above there is a
probability of 70 per cent of this result, which is thus not an unlikely outcome). Mr
B will naturally be estimating the probability of this colour at about 0.73 and so
much higher than that of the other colour. Yet in the real underlying game, the two
colours are exactly symmetrical.

We see that Mr B’s calculations using exchangeability will give results at
complete variance with the true situation. Moreover, he would probably soon notice
that there were too many long runs of one colour or the other for his assumption of
exchangeability to be plausible. He might therefore think it desirable to change his
assumption of exchangeability into some other assumption. Unfortunately, however,
he would not be allowed to do so according to De Finetti, for, to quote again a
section of the key passage given above:

... when experience teaches us the result A on the first n trials, our judgment
will be expressed by the probability P(En + 1) no longer, but by the probability
P(En + 1 | A), i.e. that which our initial opinion would already attribute to the
event En + 1 considered as conditioned on the outcome A. Nothing of this
initial opinion is repudiated or corrected; it is not the function P which has
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been modified (replaced by another P*), but rather the argument En + 1 which
has been replaced by En + 1 | A, and this is just to remain faithful to our
original opinion (as manifested in the choice of the function P) ...

(1937:146)

Yet if we assume exchangeability a priori when the sequence of events is in reality
dependent, no amount of modifying our prior probabilities P(En + l) to posterior
probabilities P(En + 1 | A) by Bayesian conditionalisation will produce probabilities
which accord with the real situation. De Finetti’s exchangeability analysis only
looked plausible in the first place because it was applied to coin tossing, and we
know from long experience that tosses of a coin can validly be considered to be
objectively independent. Unless we know that the events are objectively
independent, we have no guarantee that the use of exchangeability will lead to
reasonable results.

This point explains why the Rule of Succession leads to such erroneous results
in the case in which the Sun mysteriously fails to rise one morning. Of course our
background knowledge tells us that successive risings of the Sun are not independent
events, but are highly dependent. This explanation of the situation can be reinforced
by considering a case in some respects like the example of the Sun rising, but in
which we do know that the events are independent. In such a case, as we shall see,
the Rule of Succession gives perfectly reasonable results.

Suppose we have a large number of balls in a container. The container is
thoroughly shaken, a ball is drawn, its colour is noted and it is then replaced. We
can suppose that, as part of our background knowledge, we have a detailed
acquaintance with all the mechanisms involved so that we can be sure that the
drawings are independent. We do not, however, know the number of balls in the
container or their colour. In fact, there are 1,000,000 balls of which 999,999 are
yellow (corresponding to the Sun rising), and one is black (corresponding to its
failing to rise). Suppose a yellow ball is drawn 737,856 times, and then a black
ball is drawn. The Rule of Succession gives 737,856/737,858 = 0.9999972 to seven
significant figures for the probability of drawing a yellow ball on the next occasion.
This is actually not unreasonable in the circumstances. The results so far indicate
that there must be an overwhelming preponderance of yellow balls in the container.
So that, even if there are a few black balls, we are still much more likely to get a
yellow ball on the next draw, provided the container is shaken very thoroughly
(independence assumption). The Rule of Succession gives a reasonable result in
this case of drawing balls from a container, but an absurd result in the case of the
Sun failing to rise. This is because we know that independence applies in the case
of drawing the balls, and that it doesn’t apply in the case of the Sun either rising or
failing to rise. This reinforces our conclusion that we can only apply exchangeability
if we are sure on the basis of our background knowledge that the events concerned
are objectively independent.

This concludes my criticism. Let us now see how a supporter of De Finetti
might try to answer it. De Finetti himself does say one or two things which are
relevant to the problem. Having shown that exchangeable events are the subjective
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equivalent of the objectivist’s independent and equiprobable events, he observes
that one could introduce subjective equivalents of various forms of dependent events,
and, in particular, of Markov chains. As he says:

One could in the first place consider the case of classes of events which can
be grouped into Markov “chains” of order 1,2, ..., m, ..., in the same way in
which classes of exchangeable events can be related to classes of equiprobable
and independent events.

(De Finetti 1937: Footnote 4, 146)

We could call such classes of events Markov exchangeable. De Finetti argues that
they would constitute a complication and extension of his theory without causing
any fundamental problem:

One cannot exclude completely a priori the influence of the order of events....
There would then be a number of degrees of freedom and much more
complication, but nothing would be changed in the setting up and the
conception of the problem ..., before we restricted our demonstration to the
case of exchangeable events ...

(1937:145)

Perhaps De Finetti has in mind something like the following. Instead of just
assuming exchangeability, we consider not just exchangeability but various forms
of Markov exchangeability. To each of these possibilities we give a prior probability.
No doubt exchangeability will have the highest prior probability. If the case is a
standard one, like the biased coin, this high prior probability will be reinforced,
and the result will come out moreover less like that obtained by just assuming
exchangeability. If, however, the case is an unusual one, then the posterior
probability of exchangeability will gradually decline, and that of one of the other
possibilities will increase until it becomes much more probable than exchangeability.
Does a scheme of this sort resolve the problems which have been raised? I will
now argue that it does not.

The main problem with the approach just sketched is that it is unworkably
complicated, and moreover these complications are quite unnecessary since they
can be eliminated completely on the objective approach. I will deal with these
points in turn. What leads to so much complication is that on this approach it is
necessary to consider all the possibilities which might arise at the very beginning
of the investigation. In order to set up his prior probabilities, Mr B has to consider
every possible kind of dependence which might arise in the sequence of events,
and assign each a prior probability. Now there is a very large number of different
forms of dependence. De Finetti mentions Markov chains of different orders, but
there are non-Markovian forms of dependence as well. Even if Mr B listed all the
forms of dependence which have been so far explicitly defined and studied by
mathematicians, he could still miss the one which applies to the sequence of events
he is considering because this might be of a hitherto unstudied form. Yet for Mr B
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to list and assign prior probabilities to all forms of dependence known at present
would be a task of such complexity so as to exceed most human powers. It is a
testimony to the difficulty of this task that no one has, to my knowledge, carried it
out in detail. Moreover, and this is my second point, all this complication is
eliminated completely by adopting the objective approach. Our objectivist Ms A,
when considering a sequence of events of a hitherto unstudied type, need only
consider a single possibility to begin with. She could start with the conjecture that
the events are independent with constant probabilities for the various outcomes.
She does not need to bother a priori with other hypotheses of dependence, variable
probabilities, or whatever, because, being a good Popperian, she will subject her
initial conjecture to a series of rigorous statistical tests. Perhaps these tests will
corroborate her initial conjecture in which case an elaborate a priori consideration
of other possibilities would have been a waste of time and trouble. Perhaps, however,
the test will refute her conjecture, in which case she will, at that stage and in the
light of the results obtained, attempt to devise some new hypothesis. By approaching
the problem in this step-by-step fashion, it is rendered tractable, whereas the
Bayesian attempt to consider all possibilities a priori is quite unworkable.

Let us now consider another way in which the criticism we have made might be
answered. A subjectivist might argue that De Finetti’s requirement that prior
probabilities should be changed only by Bayesian conditionalisation, i.e. from
P(En + 1) to P(En + 1 | A) is too strong. Maybe prior probabilities should generally be
altered in this fashion, but perhaps if exceptional results appear, as in the game of
red or blue, prior probabilities could be altered in some quite different fashion to
take account of the new circumstances. This solution of the difficulty certainly
appeals to common sense, and would, I am sure, be adopted in practice.
Unfortunately, however, it destroys the basis of De Finetti’s exchangeability
reduction, and even of Bayesianism in general. The exchangeability reduction works
by arguing that whatever prior probabilities a set of different people adopt, their
posterior probabilities will converge towards the same value. However, this
argument is only valid on the assumption that all members of the set are changing
their prior probabilities to posterior probabilities by Bayesian conditionalisation.
If they are allowed at any time to change their priors in some quite different fashion
(as on the present suggestion), there is no guarantee that their posterior probabilities
will become at all similar. After 500 events, Mr B might suddenly decide to change
to some form of Markov exchangeability, while Ms C continues to use
exchangeability. After 700 events their posterior probabilities could be completely
different. Moreover, it is one of the most attractive features of Bayesianism that it
offers a simple mathematical formula for the way in which a rational person should
change his or her beliefs in the light of evidence. If we now say: ‘well, sometimes
rational people should use this mathematical formula to change their beliefs, but,
of course, it is quite open to them whenever they feel like it to change their beliefs
in a completely different way’, then surely we have lost that very feature which
made Bayesianism an appealing theory.

I conclude that De Finetti’s exchangeability reduction does not work, and it
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will be obvious that my arguments against this reduction can be used against
Bayesianism in general. I will consider this matter briefly in the next section.

Some objections to Bayesianism

Most Bayesian statisticians use Bayesianism in something like the following form.
They suppose that, in a given problem, there is a set of possible hypotheses to be
considered. This set can be written {Hθ} where θ ε I, for some set I, usually an interval
of the real line. The parameter θ is given a prior distribution µ(θ) say, and this is changed
to a posterior distribution µ(θ | e). These distributions are in effect over the set of
hypotheses under consideration. So let us set P(Hθ) = µ(θ) and P(Hθ | e) = µ(θ | e).

We can test this approach using the following simple ‘black box’ model. Mr B
is confronted with a black box which flashes a figure (either 0 or 1) on to a screen
at regular intervals t = 0, 1, 2, ..., n, .... Let the sequence of figures be x0, x1, x2, ...,
xn, .... It is generated by some process unknown to Mr B. Mr B has to assign
probabilities of the form P(xn | x1, x2, ..., xn - 1) when he knows the value of x0, x1, x2,
..., xn - 1 but not that of xn. These probabilities are taken as his betting quotients in
the usual gambling game played with Ms A on the value of the nth figure. Mr B
tackles this problem by using the standard approach of a Bayesian statistician
described in the first paragraph of this section. If e states the observed values of x0,
x1, x2, ..., xn - 1, he uses P(Hθ | e) to calculate P(xn | e).

In this framework, we can restate the objection, based on the game of red or
blue, and given previously (p. 79). Suppose Mr B chooses Hθ = the sequence is
independent with Prob(1) = θ, 0 ≤ θ ≤ 1. Suppose further that the sequence is in
reality generated by the game of red or blue with red = 0, blue = 1. Arguing as in
the previous section, we can show that Mr B’s systematic use of Bayesian
conditionalisation as his means of learning will produce a sequence of probabilities
at complete variance with reality. Bayesian conditionalisation will not therefore
be a very effective learning strategy.

The obvious reply which a Bayesian might make to this argument is that Mr B
has considered too narrow a class of hypotheses and a broader class should have
been introduced. Albert has, however, shown that there is a serious difficulty with
this reply.9 Albert asks us to suppose that the 0s and 1s flashing on the screen of the
black box are generated by what he calls a Chaotic Clock. This device is illustrated
in Figure 4.1. There is one pointer that can point to all real numbers in the interval
I = [0, 1], where the vertically upward position is zero and the vertically downward
position is 1/2. Initially, the pointer deviates by an angle ω = 2θπ from the vertically
upward position, thus pointing at the real number θ. At t = 1, 2, ..., n, ..., the pointer
moves by doubling the angle ω.

In terms of the chaotic clock, Mr B can form hypotheses as to how the sequence
of 0s and 1s is generated. Hθ might be that θ is the initial position of the pointer
and that if the pointer comes to rest in the left hand side of the dial, the screen of
the black box shows 0, while otherwise it shows 1. For technical reasons, Albert
(1999) considers a slight modification of this chaotic clock set of hypotheses,
and Suppose Mr B adopts any learning strategy whatever, i.e. he chooses his
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sequence of P(xn | e) in any arbitrary way. There then exists a prior probability
distribution µ over the set of modified chaotic clock hypotheses such that Mr B’s
probabilities are produced by Bayesian conditioning of µ.

Albert’s result is very striking indeed. His chaotic clock hypotheses are by no
means absurd. After all, chaos theory is used in both physics and in economics.
Indeed, hypotheses involving chaos are quite plausible as a means of explaining,
for example, stock market fluctuations. If Mr B were really faced with a bizarre
sequence of 0s and 1s, why should he not consider a hypothesis based on chaos
theory? His imaginary situation is not so very different from the real situation of
traders in financial markets who sit glued to their computer screens and make bets
on what will appear shortly. Yet if Mr B is allowed to consider the chaotic clock set
of hypotheses, then any learning strategy he adopts becomes a Bayesian strategy
for a suitable choice of priors. In effect, Bayesianism has become empty.

It follows that a Bayesian of the type we are considering in this section (Mr B
say) is caught on the horns of a dilemma. Mr B may adopt a rather limited set of
hypotheses to perform his Bayesian conditionalisation, but then, as the example of
the game of red or blue shows, if his set excludes the true hypothesis his Bayesian
learning strategy may never bring him close to grasping what the real situation is.
This is the first, or ‘red or blue’, horn of the dilemma. If Mr B responds by saying
he is prepared to consider a wide and comprehensive set of hypotheses, these will
surely include hypotheses from chaos theory and thus anything he does will become
Bayesian, making the whole approach empty. This is the second, or ‘chaotic clock’,
horn of the dilemma.

These difficulties with Bayesianism and, more specifically, with De Finetti’s
exchangeability reduction do indicate that there may be a need for objective
probabilities and a methodology for statistics based on testing. This is therefore a
good point at which to begin considering the principal objective theories of
probability which will be dealt with in the next three chapters. I will, however,
conclude the present chapter by considering in the last section the historical
background to De Finetti’s introduction of the subjective theory.

Figure 4.1 A chaotic clock
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De Finetti’s route to subjective probability

Earlier (pp. 52–3) I showed how Ramsey arrived at the subjective theory of
probability through a criticism of Keynes’s logical theory. This was not the way
that De Finetti came to the theory, however, since, as I pointed out earlier, he only
studied Keynes’s views on probability carefully after he had already formulated
the subjective theory. But what then was De Finetti’s route to subjective probability?

De Finetti (1995) gives some reminiscences about when he first concluded that
probability was subjective. As far as he could remember, the adoption of this
philosophical position occurred very early in his intellectual career, and in fact:

When I was a student, probably two years before graduating, while I was
studying a book of Czuber’s, Wahrscheinlichkeitsrechnung ... In that book
there was a brief account of the various conceptions of probability, presented
very sketchily in the first few paragraphs. Now I don’t remember well the
contents of the book either in general or regarding the various conceptions
of probability. It seems to me that he mentioned De Morgan as representative
of the subjective point of view.... Comparing the various positions it seemed
to me that all the other definitions were meaningless. In particular the
definition which is based on the so-called “equally probable cases” seemed
to me unacceptable.

(De Finetti 1995:111)

Czuber’s book on probability was published in 1903, with a second enlarged
and revised edition appearing in 1908–10. It was an important work in the early
decades of the twentieth century and is referred to extensively by Keynes. It is
worth noting that Keynes states that Czuber gives one of the best accounts of the
paradoxes of geometrical probability (Keynes 1921:47), but that nonetheless
Czuber thought that some form of the Principle of Non-sufficient Reason was
indispensable.

In De Finetti’s (1931a) first systematic account of the philosophy of probability,
there are, however, no references to either Czuber or De Morgan. Instead, he
cites mainly the writings of the French school of probabilists: Bertrand, Borel,
Lévy and Poincaré. These writers were of course steeped in the Laplacean
tradition, and their writings (particularly those of Bertrand and Borel) contained
detailed discussions of the paradoxes of the Principle of Indifference. Thus,
although De Finetti’s reading must have been considerably different from
Ramsey’s, he was faced with the same problem situation – namely the difficulties
for the traditional Laplacean kind of Bayesianism created by paradoxes of the
Principle of Indifference. These paradoxes arose because of the perceived need
to generate a single correct probability by some kind of logical process. They
are thus resolved by the subjective move which allows different people to have
different prior probabilities without this creating a contradiction.

However, De Finetti does not focus narrowly on the problems generated by
the Principle of Indifference, but he rejects the whole Laplacean outlook, both
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Laplace’s determinism and his acceptance of the enlightenment value of
rationality. Regarding determinism, De Finetti says:

Certainly, we cannot accept determinism; we cannot accept the “existence”,
in that famous alleged realm of darkness and mystery, of immutable and
necessary “laws” which rule the universe, and we cannot accept it as true
simply because, in the light of our logic, it lacks all meaning....

Nature will not appear ... as a monstrous and incorrigibly exact clockwork
mechanism where everything that happens is what must happen because it
could not but happen, and where all is foreseeable if one knows how the
mechanism works.

(1931a:169–70)

De Finetti returns often in his writings to this criticism of determinism and to a
consideration of what should replace it. He also (De Finetti 1931a) explicitly rejects
enlightenment rationalism in favour of a relativistic, and even irrational, mentality.
Thus he says:

... the subjective theory of probability ... [is] ... an example of the application
of the relativistic mentality to such an increasingly important branch of
modern mathematics as the probability calculus, and as an essential part of
the new vision of science which we want to give in an irrationalist, and, as
we shall say, probabilist form.

(1931a:172)

As we observed at the end of Chapter 2, these anti-enlightenment themes are very
characteristic of the twentieth century, and perhaps especially of the 1930s when
De Finetti was writing.

Although De Finetti refers to all the French authors mentioned above, his most
frequent reference is to Poincaré’s chapter on the calculus of probabilities in Science
and Hypothesis (1902: Chapter XI, 183–210). Here Poincaré does indeed introduce
subjective probability, which he says is the appropriate concept when a gambler is
trying a single coup (1902:187–8). However, Poincaré goes on to argue that there
is objective probability which manifests itself in a long sequence of repetitions. It
looks as if De Finetti accepted Poincaré’s notion of subjective probability but did
not see any need for having objective probability as well. However, Poincaré has
an argument for objective probability based on the insurance business. How could
insurance companies make regular profits, he asks, if there was not some objective
reality corresponding to their probability calculations? This argument obviously
puzzled De Finetti, because he comments on it as follows:

It seems strange that from a subjective concept there follow rules of action
that fit practice. And Poincaré keeps explaining why the subjective
explanation seems insufficient to him, mentioning practical applications in
the field of insurance. “There are many insurance companies that apply the
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rules of the probability calculus, and they distribute to their shareholders
dividends, whose objective reality is incontestable.”

(De Finetti 1931a:194)

Poincaré’s example might be criticised in the light what happened at Lloyd’s of
London. This insurance company not only failed to distribute dividends, but even
brought financial disaster to many of its ‘names’. Is this an argument for the
subjective approach to probability? Did the managers of Lloyd’s formulate
subjective probabilities for various events, which, although perfectly coherent,
were rather unlucky? Or were they a bunch of incompetents who failed to apply
the probability calculus correctly? Unfortunately, the whole matter is surrounded
by great obscurity and allegations of fraud and corruption. So it is difficult to draw
any definite conclusion.

We can now consider another important difference between Ramsey and De
Finetti. It is to De Finetti rather than Ramsey that we should attribute the concept
of exchangeability. This remark needs a little qualification since one of Ramsey’s
manuscript notes, published for the first time in 1991, does contain a derivation of
Laplace’s Rule of Succession in the special case r = n using an argument quite
similar to the one given above (pp. 70–3). Ramsey make the derivation under the
condition: ‘Suppose chance a priori of µ out of n + 1 being A is f(µ), all permutations
equally probable.’ (1991:278). The condition of all permutations being equally
probable is equivalent in this context to De Finetti’s exchangeability. Galavotti,
who was the first to publish this passage, suggests that Ramsey took this condition
‘from his teacher Johnson, who had introduced a ‘permutation postulate’
(1994:333).10 However, we have here only a short unpublished note dealing with a
very special case. This does not compare with De Finetti (1930b:121), who defined
the concept explicitly,11 and then went on to develop the mathematical theory of
exchangeable random quantities in a series of important papers which culminated
in his 1937. Since De Finetti wanted to eliminate objective probabilities completely
in favour of subjective probabilities, he had more of a stimulus for developing the
theory of exchangeability than had Ramsey, who, in his 1926 book at least,
advocated, like Poincaré, a two-concept view of probability with both objective
and subjective probabilities. I will return to Ramsey’s two-concept view in Chapter
8, after I have given a detailed account of the two principal objective theories of
probability in Chapters 5, 6 and 7.
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The distribution of X tends to the normal distribution with zero mean (µ = 0) and unit standard
deviation (σ = 1) as n → ∞. To illustrate this we plot the values of X for fixed n and p, and r = 0,
1, ..., n on the x-axis, and at each point we plot along the y-axis the value of the binomial
distribution multiplied by √np(1 - p). This is the scaled binomial which is compared with the
normal distribution with zero mean and unit standard deviation, since the limit theorem states

In Figure 1.1 this procedure was carried out for (a) p = 0.6, n = 5, and (b) p = 0.6, n = 30. I am
most grateful to my son Mark Gillies for doing the computer graphics. It is noteworthy that for
n as small as 30, the approximation of the binomial to the normal distribution is very good. For
further mathematical details including two proofs of De Moivre’s theorem, one using a modern
approach and the other an approach closer to De Moivre’s original one, see Cramér (1946: 198–
203).

2 The classical theory

  1 Chapter 4 contains a full account of the axioms of probability, including an explanation of what is
meant by ‘finite additivity’.

  2 This objection was made to me in conversation by Dr Tony Dale.

3 The logical theory

  1 In the last fifteen or so years there has been a great deal of scholarly work on Cambridge in this
period, and this has been very helpful for understanding the intellectual currents of the time. For
my account in this chapter, I have found the following works very helpful: Bateman (1988,
1996), Davis (1994), Monk (1990, 1996) and Skidelsky (1983, 1992). I have also benefited
from reading Childers (1996), which contains useful chapters on the logical theory of probability,
both in Keynes’s and Carnap’s version.

  2 For a more detailed comparison between Moore and Keynes as regards Platonism and intuition,
see Davis (1994: 10–28).

  3 For further details, see Keynes (1921).
  4 This example was suggested by a member of the audience when I was lecturing on this topic on

one occasion.
  5 This claim is argued for in detail in Gillies (1987).
  6 The sketch given is rough and designed only to illustrate one of the key features of the argument

of Bose and Einstein. For a fuller account with mathematical details see, for example, Born
(1935: 268–76).

4 The subjective theory

  1 A good discussion of these criticisms of Ramsey’s is to be found in Cottrell (1993: 30–2).
  2 The heroine and hero of this betting scenario are named after the principal characters in Samuel

Richardson’s novel of 1740 Pamela; or, Virtue Rewarded. Pamela Andrews (Ms A) is a servant
girl in the home of Mr B (always referred to thus in the novel). Mr B, who is very rich, attempts
to seduce Pamela, but she virtuously refuses his advances, and eventually he decides to marry
her. The novel was a best seller at the time of its publication and exerted an enormous influence
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on the development of European literature. Presumably in Richardson’s fictional setting, it must
have been important for Ms A to ascertain Mr B’s degrees of belief in various propositions.

  3 For an interesting discussion of the money versus utility problem which is more sympathetic to
the views of Ramsey, see Sahlin (1990: 41–3).

  4 The proof which follows is based on De Finetti 1937, but expanded to fill in the details. A
shorter but mathematically more sophisticated proof is to be found in Paris (1994: 19–23).

  5 This was pointed out to me by Ladislav Kvasz.
  6 A full account of his views on the question of finite versus countable additivity can be found

in De Finetti (1970), and I discuss these views in my review of the book (Gillies 1972b: 142–
5). In that article I give references to the original Italian edition of De Finetti’s book, but in
what follows here my references will be to the English translation which appeared in 1974.

  7 I learnt of this example from a typescript version of Popper’s (1957a), which was circulating
in LSE when I was a graduate student there in 1966–8. Popper considers a situation in
which the Sun has risen 1,000,000 times in succession but then fails to rise for 10 days. He
uses this to criticise the subjective theory of learning in general terms for giving too much
authority to past experience, and making a revision of our ideas practically impossible.
Although nearly all of the typescript is reprinted in Popper (1957a, 1983), this example is
rather curiously omitted. A possible reason is that the example is not effective against all
versions of the subjective theory of learning. As Howson and Urbach point out (1989: 81),
Bayesianism implies falsificationism in the sense that refuted hypotheses acquire probability
0. Let us consider then a version of subjective Bayesianism which is concerned with the
learning of general laws in the sense of trying to assign probabilities to such laws in the
light of evidence. Such an approach would have assigned a probability to the universal law
that the Sun rises every morning in the light of the 1,000,000 sunrises in succession. However,
this probability would drop to zero after the first failure. Thus Popper’s example is not a
good argument against all versions of the subjective theory of learning, but it does yield a
very strong argument against the Rule of Succession as I will show in what follows.

  8 The game of red or blue is described in Feller (1950: 67–95), which contains an interesting
mathematical analysis of its curious properties. Popper read of the game in Feller, and he
had the idea of using it to argue against various theories of induction. Popper (1957a:
358–60) (reprinted 1983: 301–5) uses the game to criticise what he calls ‘the simple
inductive rule’, while later (Popper 1957a: 366–7, reprinted in 1983: 323–4) he uses the
game to try to prove the impossibility of an inductive logic. The first of these arguments
seems to me valid, and I have adapted it to produce the criticism of De Finetti’s
exchangeability reduction given here. The second of Popper’s arguments seems to me
less convincing, since it is perfectly possible that an inductive logic could be devised
which could accommodate cases like the game of red or blue. Indeed I give arguments in
favour of the possibility of an inductive logic (Gillies 1996: 98–112).

  9 The mathematical part of Albert’s argument is to be found in Albert (1999), where Theorem
1 is what is here called the Anything Goes Theorem. The more philosophical part of the
argument will be published soon. I am most grateful to Max Albert for sending me an
unpublished typescript with a full discussion of both the mathematical and philosophical
sides of the argument, as well as for some helpful discussions of the question and its relation
to the argument involving the game of red or blue.

  10 An interesting account of W. E. Johnson’s contribution to this question is to be found in Zabell
(1989).

  11 De Finetti initially used the term ‘equivalent’ (in Italian equivalente), but the term ‘exchangeable’
has now become standard.
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