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«7 Success Stories

The successes of the Bayesian approach to confirmation fall into two
categories. First, there are the successes of Bayesianism in illuminating the
virtues and pitfalls of various approaches to confirmation theory by pro-
viding a Bayesian rationale for what are regarded as sound methodologi-
cal procedures and by revealing the infirmities of what are acknowledged
as unsound procedures. The present chapter reviews some of these explan-
atory successes. Second, there are the successes in meeting a number of
objections that have been hurled against Bayesianism. The following chap-
ter discusses several of these successful defenses. Taken together, the com-
bined success stories help to explain why many Bayesians display the
confident complacency of true believers. Chapters 5 to 9 will challenge this
complacency. But before turning to the challenges, let us give Bayesianism
its due.

1 Qualitative Confirmation: The Hypotheticodeductive Method

When Carl Hempel published his seminal “Studies in the Logic of Confir-
mation” (1945), he saw his essay as a contribution to the logical empiricists’
program of creating an inductive logic that would parallel and comple-
ment deductive logic. The program, he thought, was best carried out in
three stages: the first stage would provide an explication of the qualitative
concept of confirmation (as in ‘E confirms H’); the second stage would
tackle the comparative concept (as in ‘E confirms H more than E’ confirms
H"); and the final stage would concern the quantitative concept (as in ‘E
confirms H to degree r’). In hindsight it seems clear (at least to Bayesians)
that it is best to proceed the other way around: start with the quantitative
concept and use it to analyze the comparative and qualitative notions. The
difficulties inherent in Hempel’s own account of qualitative confirmation
will be studied in section 2. This section will be devoted to the more
venerable hypotheticodeductive (HD) method.

The basic idea of HD methodology is deceptively simple. From the
hypothesis H at issue and accepted background knowledge K, one deduces
a consequence E that can be checked by observation or experiment. If
Nature affirms that E is indeed the case, then H is said to be HD-
confirmed, while if Nature affirms T1E, H is said to be HD-disconfirmed.
The critics of HD have so battered this account of theory testing that it
would be unseemly to administer any further whipping to what is very
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nearly a dead horse.! Rather, I will review the results of the jolly Bayesian
postmortem.

Suppose that (a) {H,K}EE, (b) 0<Pr(H/K)<1, and (¢) 0<
Pr(E/K) < 1.2 Condition (a) is just the basic HD requirement for confirma-
tion. Condition (b) says that on the basis of background knowledge K, H
is not known to be almost surely true or to be almost surely false, and (c)
says likewise for E. By Bayes’s theorem and (a), it follows that

Pr(H/E & K) = Pr(H/K)/Pr(E/K). (3.1)

By applying (b) and (c) to (3.1), we can conclude that Pr(H/E & K) >
Pr(H/K), i.e., E incrementally confirms H relative to K. Thus Bayesianism
is able to winnow a valid kernel of the HD method from its chaff.

(To digress, this alleged success story might be questioned on the
grounds that HD testing typically satisfies not condition (a) but rather
a condition Hempel calls the “prediction criterion” of confirmation,;
namely, (a') E is logically equivalent to E, & E,, {H,K,E,} = E,, but
{H,K}  E,. That is, HD condition (a) is satisfied with respect to the
conditional prediction E; — E,, but the total evidence consists of E; and
E, together. Let us use Bayes’s theorem to draw out the consequences of
(a). It follows that Pr(H/E, & E, & K) = Pr(H/E, & K)/Pr(E,/E, & K).
Thus if Pr(E,/E; & K) < 1 and Pr(H/E, & K) = Pr(H/K), the total evi-
dence E, & E, incrementally confirms H. These latter two conditions are
satisfied in typical cases of HD testing. For example, let H be Newton’s
theory of planetary motion, let E; be the statement that a telescope is
pointed in such and such a direction tomorrow at 3:00 p.m., and let E, be
the statement that Mars will be seen through the telescope. Presumably,
E, is probabilistically irrelevant to the theory, and E, is uncertain on the
basis of E; and K.)

Notice also that from (3.1) it follows that the smaller the value of
the prior likelihood Pr(E/K), the greater the incremental difference
Pr(H/E & K) — Pr(E/K), which seems to validate the saying that the more
surprising the evidence is, the more confirmational value it has. This
observation, however, is double-edged, as we will see in chapter 5.

The problem of irrelevant conjunction, one of the main irritants of the
HD method, is also illuminated. If {H,K} |= E, then also {H & I,K} = E,
where I is anything you like, including a statement to which E is, intuitively
speaking, irrelevant. But according to the HD account, E confirms H & I.
In a sense, the Bayesian analysis concurs, since if Pr(H & I/K) > 0, it
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follows from the reasoning above that E incrementally confirms H & I.
However, note that it follows from (3.1) that the amounts of incremental
confirmation that H and H & I receive are proportional to their prior
probabilities:

Pr(H/E & K) — Pr(H/K) = Pr(H/K)[(1/Pr(E/K)) — 1]
Pr(H & I/E & K) — Pr(H & I/K) = Pr(H & I/K)[ (1/Pr(E/K)) — 1].

Since in general Pr(H & I/K) < Pr(H/K), adding the irrelevant conjunct I
to H lowers the incremental confirmation afforded by E.

Finally, it is worth considering in a bit more detail the case of HD
disconfirmation. Thus, suppose that when Nature speaks, she pronounces
TE.If {H,K} |= E and if K is held to be knowledge, then H must be false,
so HD disconfirmation would seem to be equivalent to falsification. But as
Duhem and Quine have reminded us, the deduction of observationally
decidable consequences from high-level scientific hypotheses often requires
the help of one or more auxiliary assumptions A. It is not fair to ignore
this problem by sweeping the A’s under the rug of K, since the A’s are often
every bit as questionable as H itself. Thus from Nature’s pronouncement
of T1E all that can be concluded from deductive logic alone is that 7H v
T1A. If HD methodology were all there is to inductive reasoning, then
there would be no principled way to parcel out the blame for the false
prediction, and we would be well on the way to Duhem and Quine holism
(see section 4 below). In particular, H could be maintained come what may
if the only constraints operating were those that followed from direct
observation and deductive logic. But the fact that the majority of scientists
sometimes regard the maintenance of a hypothesis as reasonable and
sometimes not is a fact of actual scientific practice that cries out for
explanation. The Bayesian attempt at an explanation will be examined in
section 7 below.

2 Hempel’s Instance Confirmation

Having rejected the HD or prediction criterion of confirmation, Hempel
constructed his own analysis of qualitative confirmation on a very different
basis. He started with a number of conditions that he felt that any adequate
theory of confirmation should satisfy, among which are the following:
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Consequence condition If E = H, then E confirms H.
Consistency condition If E confirms H and also H', then | 71(H & H').

Special consequence condition If E confirms H and H = H', then E con-
firms H'.

Hempel specifically rejected the converse consequence condition:

Converse consequence condition If E confirms H and H' = H, then E
confirms H'.

For to add the last condition to the first three would lead to the disaster
that any E confirms any H.> (Note that HD confirmation satisfies the
converse consequence condition but violates both the consistency condi-
tion and the special consequence condition.)

Hempel’s basic idea for finding a definition of qualitative confirmation
satisfying his adequacy conditions was that a hypothesis is confirmed by
its positive instances. This seemingly simple and straightforward notion
turns out to be notoriously difficult to pin down.* Hempel’s own explica-
tion utilized the notion of the development of a hypothesis for a finite set I
of individuals. Intuitively, dev,(H) is what H asserts about a domain
consisting of just the individuals in I. Formally, dev,(H) for a quantified H
is arrived at by peeling off universal quantifiers in favor of conjunctions
over I and existential quantifiers in favor of disjunctions over I. Thus, for
example, if I = {a,b} and H is (Vx)(3y)Lxy (e.g., “Everybody loves some-
body”), dev,(H) is (Laa v Lab) & (Lbb v Lba). We are now in a position
to state the main definitions that constitute Hempel’s account.

Definition E directly Hempel-confirms H iff E |= dev,(H), where I is the
class of individuals mentioned in E.

Definition E Hempel-confirms H iff there is a class C of sentences such
that C = H and E directly confirms each member of C.3

Definition E Hempel-disconfirms H iff E Hempel-confirms 71 H.

The difficulties with Hempel’s account can be grouped into three catego-
ries. The first concerns the pillars on which the account was built: Hempel’s
so-called adequacy conditions. Bayesians have at least two ways of defining
qualitative confirmation, one of which we already encountered in section
1; namely, E incrementally confirms H relative to K iff Pr(H/E & K) >
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Pr(H/K). The second is an absolute rather than incremental notion; specif-
ically, E absolutely confirms H relative to K iff Pr(H/E & K) > k > .5. (A
third criterion sometimes used in the literature, e.g., Mackie 1963, says that
E confirms H relative to K just in case Pr(E/H & K) > Pr(E/K). The
reader can easily show that on the assumption that none of the proba-
bilities involved is zero, this likelihood criterion is equivalent to the incre-
mental criterion.) In both instances there appears to be a mismatch, since
Hempel’s account is concerned with a two-place relation ‘E confirms H’
rather than with a three-place relation (‘E confirms H relative to K’). The
Bayesians can accommodate themselves to Hempel either by taking K to
be empty or by supposing that K has been learned and then working with
the new probability function Pr'(-) = Pr(:/K) obtained by conditionaliza-
tion. But since one of the morals the Bayesians want to draw is that
background knowledge can make a crucial difference to confirmation, I
will continue to make K an explicit factor in the confirmation equation.

The first difficulty for Hempel’s account can now be stated as a dilemma.
For any choice of K compatible with H, Hempel’s adequacy conditions
accord well with the absolute notion of Bayesian confirmation. For exam-
ple, if Pr(H/E & K) > .5 and H = H’, then Pr(H'/E & K) > .5, so the spe-
cial consequence condition is satisfied. But absolute confirmation cannot
be what Hempel had in mind, since he holds that the observation of a
single black raven a confirms the hypothesis that all ravens are black,
even though for typical K’s, Pr((Vx)(Rx — Bx)/Ra & Ba & K) « .5. On the
other hand, while the incremental concept of confirmation allows that a
single instance can confirm a general hypothesis, both the consistency
condition and the special consequence condition fail for not atypical K’s,
as examples by Carnap (1950) and Salmon (1975) show.® Of course, there
may be some third probabilistic condition of confirmation that allows
Hempel’s account to pass between the horns of this dilemma. But it is up
to the defender of Hempel’s instance confirmation to produce the tertium
quid. And even to conduct the search for a probabilistic tertium quid is to
fall into the hands of the Bayesians.

The second category of difficulties revolves around the question of
whether Hempel’s account is too narrow. One reason for thinking so is
that, as Hempel himself notes, a hypothesis of the form

(Vx)3y)Rxy & (Vx)(Vy)(Vz) [(Rxy & Ryz) - Rxz] & (Vx) 1Rxx

cannot be Hempel-confirmed by any consistent E, since the development
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of such a hypothesis for a finite domain is inconsistent. Nor is the hypoth-
esis (Vx)(Vy)Rxy Hempel-confirmed by the set of evidence statements
{Ra;a;}, where i=1, 2, ..., 10° and j=1, 2, ..., 10° — 1. Even more
troublesome is the fact that Hempel’s account is silent about how theoreti-
cal hypotheses are confirmed, for if, as Hempel intended, E is stated purely
in the observational vocabulary and if H is stated in a theoretical vocabu-
lary disjoint from the observational vocabulary, then E cannot, except in
very uninteresting cases, Hempel-confirm H.” This silence is a high price
to pay for overcoming some of the defects of the more vocal HD method.

Clark Glymour (1980) has sought to preserve Hempel’s idea that hy-
potheses are confirmed by deducing positive instances of them from obser-
vation reports. In the case where H is stated in theoretical vocabulary,
Glymour’s bootstrapping method allows the deduction to proceed via
auxiliary hypotheses, typically drawn from a theory T of which H itself is
a part.® His basic confirmation relation is thus three-place: E confirms H
relative to T.

The Bayesian response to these difficulties and to Glymour’s reaction to
them is twofold. First, there is no insuperable problem about how observa-
tional data can confirm, in either the incremental or absolute sense, a
theoretical hypothesis; indeed, the application of Bayes’s theorem shows
just how such confirmation takes place, at least on the assumption that the
prior probability of the hypothesis is nonzero (a matter that will be taken
up in chapter 4). Second, unless bootstrap confirmation connects to rea-
sons for believing the hypothesis or theory, it is of no interest. But once the
connection is made, the bootstraps can be ignored in favor of the standard
Bayesian account of reasons to believe. This matter will be examined in
more detail in section 4 below.

The third category of difficulties is orthogonal to the second. Now the
worry is that while Hempel’s instance confirmation may be too narrow in
some respects, it may be too liberal in other respects. Consider again the
ravens hypothesis: (Vx)(Rx — Bx). Which of the following evidence state-
ments Hempel-confirm it?

E;: Ra, & Ba,

E,: T1Ra, & 71Ba,
E3: T1Ray

E,: Ba,
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Es: 71Ras & Bas
Es: Rag & 71Bag

Only E, fails to Hempel-confirm the hypothesis, and that is because Eg4
falsifies it. The indoor ornithology involved in using E, to E as confirma-
tion of the ravens hypothesis has struck many commentators as too easy
to be correct. Bayesian treatments of Hempel’s ravens paradox will be
taken up in the following section.

If anything is safe in this area, it would seem to be that E; does confirm
(Vx)(Rx — Bx). But safe is not sure. Recall that Hempel’s definition of
confirmation is purely syntactical in that it is neutral to the intended
interpretation of the predicates. This means that E; Hempel-confirms
(Vx)(Rx — Bx) even if we take Bx to mean not that x is black but that x is
blite, i.e., x is first examined before the year 2000 and is black, or else is not
examined before 2000 and is white. Let a; be first examined in the year i.
Then by the special consequence condition, Ra, & Ba; & Ra, & Ba, &
...& Ra, 499 & Ba,q9o Hempel-confirms the prediction Ra,q0; = Ba,001,
i.e., the prediction that if a,4¢, is a raven, then it is white, which is, to say
the least, counterintuitive. We have here an instance of what Goodman
(1983) calls the “new riddle of induction.” The Bayesian treatment of this
problem will be given in detail in chapter 4. But for now I will simply note
on behalf of the Bayesians that they are not committed to assigning proba-
bilities purely on the basis of the syntax of the hypothesis and the evidence,
as Hempel’s analogy between deductive and inductive logic would suggest.
The present example is enough to show that an adequate account of
confirmation must be sensitive to semantics, and this lesson is easily incor-
porated into Bayesianism.

3 The Ravens Paradox

In sections 1 and 2 Bayesianism gained reflected glory of sorts from the
whippings the HD and Hempel accounts took. It is time for Bayesianism
to earn additional glory of a more positive sort.

Hempel took it as a desirable consequence of his account that the
evidence Ra & Ba confirms the hypothesis (Vx)(Rx — Bx).> The paradox
of the ravens in one of its forms arises from the fact that on Hempel’s
analysis, the evidence 1Rb & ~1Bb also confirms (Vx)(Rx — Bx). Before
turning to the Bayesian analysis of the paradox itself, it is worth noting
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that the Bayesian is not even willing to go the first step with Hempel
without first looking both ways.

Suppose that 0 < Pr(H/K) < 1, where H stands for the ravens hypothe-
sis. Then by an application of Bayes’s theorem it follows that finding a to
be a black raven induces incremental confirmation,

Pr(H/Ra & Ba & K) > Pr(H/K),
just in case
Pr(Ra/H & K) > Pr(Ra/1H & K) x Pr(Ba/Ra & 1H & K).

Incremental disconfirmation results just in case the inequality is re-
versed.'® The reader is invited to reflect on the kinds of background
knowledge K that will make or break these inequalities. Consider, for
instance, a version of I. J. Good’s (1967) example. We are supposed to
know in advance (K) that we belong to one of two bird universes: one
where there are 100 black ravens, no nonblack ravens, and 1 million other
birds, or else one where there are 1,000 black ravens, 1 white raven, and 1
million other birds. Bird a is selected at random from all the birds and
found to be a black raven. This evidence, Good claims, undermines the
ravens hypothesis. Use the above formula to test this claim. Such exercises
help to drive home the point that a two-place confirmation relation that
ignores background evidence is not very useful.

Let us turn now to the Bayesian treatment of the bearing of the evidence
of nonblack nonravens on the ravens hypothesis. Suppes (1966) invites us
to consider an object a drawn at random from the universe. Set

Pr(Ra & Ba/K) = p,,  Pr(Ra & 71Ba/K) = p,,

Pr(1Ra & Ba/K) = p,,  Pr(1Ra & “1Ba/K) = p,. G2
Then

Pr(71Ba/Ra & K) = p,/(p; + P5) 3.3)
and

Pr(Ra/71Ba & K) = p,/(ps + Pa). (3.4)

From (3.3) and (3.4) it follows that Pr(71Ba/Ra & K) > Pr(Ra/1Ba & K)
iff p, > p,. But from what we know of the makeup of our universe, it seems
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safe to assume that p, > p,, with the consequence that the conditional
probability of a’s being nonblack, given that it is a raven, is much greater
than the conditional probability of a’s being a raven, given that it is
nonblack. The moral Suppes wants us to draw from this is that sampling
from the class of ravens is more productive than sampling from the class
of nonblack objects, since the former procedure is more likely to produce
a counterexample to the ravens hypothesis.

There are two qualms about this moral. The first is that it doesn’t seem
directly useful to Bayesians; indeed, at first blush it seems more congenial
to a Popperian line that emphasizes the virtues of attempted falsifications
of hypotheses. Second, it is not clear how the moral follows from the
inequality derived, since a was supposed to result from a random sample
of the universe at large rather than from a random sample of either the
class of ravens or the class of nonblack objects.

Horwich’s (1982) attack on the ravens paradox starts from the observa-
tion that there are several ways to obtain the evidence Ra & Ba, namely,
to pick an object at random from the universe at large and find that it has
both ravenhood and blackness, to pick an object at random from the class
of ravens and find that it is black, or to pick an object at random from the
class of black things and find that it is a raven. A similar remark applies to
the evidence 71Rb & ~1Bb. Horwich introduces the notation R*a to mean
that a was drawn at random from the class of ravens and the notation
T1B*b to mean that b was drawn at random from the class of non-
black things. To illuminate the ravens paradox, he wants to compare the
confirmational effects of the two pieces of evidence R*a & Ba and
T1B*b & T1Rb. According to Horwich’s application of Bayes’s theorem,

Pr(H/R*a & Ba & K) = Pr(H/K)/Pr(R*a & Ba/K) (3.5)
and
Pr(H/1B*b & 71Rb & K) = Pr(H/K)/Pr(1B*b & 1Rb/K), (3.6)

where K is the same as before. Thus
Pr(H/R*a & Ba & K) > Pr(H/1B*b & "1Rb & K)
iff Pr(T1B*b & 1Rb/K) > Pr(R*a & Ba/K).

But the latter is true for our universe, Horwich asserts.
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But as with Suppes’s construction, it is not clear how this conclusion
follows. In the first place, why is it true (as (3.5) and (3.6) assume) that

Pr(R*a & Ba/H & K) = Pr(T1B*b & 1Rb/H & K) = 1?

It is true that the probability of a randomly chosen raven being black,
given H & K, is 1, but Pr(R*a & Ba/H & K) is the probability that an
object a is randomly chosen from the class of ravens and is black, given
H & K, and this probability is surely not 1. In the second place, comparing
Pr(71B*b & 1Rb/K) and Pr(R*a & Ba/K) involves a comparison of the
probability that an object will be randomly sampled from the class of
ravens with the probability that it will be randomly sampled from the class
of nonblack things, and such a comparison seems peripheral to the para-
dox at best.

Horwich’s basic idea can be brought to fruition by putting into the
background knowledge K the information that R*a and —1B*b. Bayes’s
theorem can then be legitimately applied to the new K to conclude that

Pr(H/Ra & Ba & K) = Pr(H/K)/Pr(Ba/K) (3.7
and
Pr(H/"1Rb & —1Rb & K) = Pr(H/K)/Pr(T1Rb/K). (3.8)

Thus, relative to this K, the evidence Ra & Ba has more confirmational
value vis-a-vis the ravens hypothesis than does TRb & ~1Bb just in
case Pr(T1Rb/K) > Pr(Ba/K). A further application of the principle of
total probability shows that this latter inequality holds just in case
Pr(71Ba/1H & K) > Pr(Rb/71H & K). This last inequality presumably
does hold in our universe, for given that some ravens are nonblack (71H),
we are more likely to produce one of them by sampling from the class of
ravens than by sampling from the class of nonblack things simply because
of the known size and heterogeneity of the class of nonblack things as
compared with the known size of the class of ravens. Suppes is thus
vindicated after all, since the greater confirmatory power of Ra & Ba over
T1Rb & ~1Bb has to do with the relative threats of falsification. In this way
Bayesianism pays a backhanded compliment to Popper’s methodology;
namely, it is precisely because, contrary to Popper, inductivism is possible
that the virtues of sincere attempts to falsify can be recognized.!*

Similar points are made by Gaifman (1979), although his assumed sam-
pling procedure is somewhat different. Let K report that ¢ was drawn at
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random from the universe and found to be a raven and that d was also
drawn at random from the universe and found to be nonblack. An analysis
like the one above shows that

Pr(H/Rc & Bc & K) > Pr(H/"1Rd & —1Bd & K)
justin case Pr(T1Bc/ TH & K)> Pr(Rd/71H & R).

But the procedure of sampling from the universe at large can be wasteful,
since it can produce relatively useless results, such as 71Re & Be. More-
over, one can wonder whether the evidence Ra & Ba, under the assump-
tion that a was drawn at random from the class of ravens, gives better
confirmational value than the evidence Rc & Bc, under the assumption
that ¢ was drawn at random from the universe at large, i.e., whether

Pr(H/Ra & Ba & K & K) > Pr(H/Rc & Bc & K & K).

Ileaveit to the reader to ponder this question with the clue that the answer
is positive just in case

Pr(11Ba/71H & K & K) > Pr(T1Bc/1H & K & K).12

4 Bootstrapping and Relevance Relations

In Theory and Evidence (1980) Glymour saw bootstrapping relations not
only as a means of extending Hempel’s instance confirmation to theoreti-
cal hypotheses but also as an antidote to Duhem and Quine holism. It
makes a nice sound when it rolls off the tongue to say that our claims about
the physical world face the tribunal of experience not individually but only
as a corporate body. But scientists, no less than business executives, do not
typically act as if they are at a loss as to how to distribute praise through
the corporate body when the tribunal says yea, or blame when the tribunal
says nay. This is not to say that there is always a single correct way to make
the distribution, but it is to say that in many cases there are firm intuitions.
Bootstrap relations would help to explain these intuitions if they helped to
explain why it is that for some but not all H’s that are part of a theory T,
E bootstrap-confirms H relative to T.

As a sometime Bayesian I now think that bootstrapping should be
abandoned in favor of a Bayesian analysis. Bayesians can be sympathetic
to the two motivations for bootstrapping mentioned above in section 2. At
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the same time Bayesians can recognize that any account of confirmation
modeled on Hempel’s approach will have two fatal flaws. (1) For Hempel,
whether or not E confirms H depends only on the syntax of E and H. But
from Goodman we know this to be wrong (see section 2 above and chapter
4). (2) For Hempel, confirmation is a two-place relation. But from the
ravens paradox and other examples we know that background informa-
tion K must be brought into the analysis to get an illuminating treatment.
The relevance of these points to bootstrapping can be brought into focus
with the help of Christensen’s (1983) examples.

Let T have as its axioms H;: (Vx)(Rx — Bx), and H,: (Vx)(Rx — Hx), the
former of which is our old friend the ravens hypothesis and the latter of
which asserts that all ravens live a happy afterlife in bird heaven. At first
blush, evidence from the observation of the color of a raven is directly
relevant to H, but is irrelevant to H,, even relative to T. But Christensen
shows how, with a little logical flimflam, such evidence leads to a bootstrap
confirmation of H, relative to T. On the standard conception of theories,
T is the logical closure of {H,, H,}. Thus it is part of T that

H,: (¥x)[Rx — (Bx < Hx)].

From E: Ra & Ba, we can deduce via H; that Ra & Ha, which is a Hempel
positive instance of H,. Moreover, the possible alternative evidence E':
Ra & 71Ba, leads via H; to Ra & ~1Ha, which is a counterinstance of H,.
Together these “computations” constitute a positive bootstrap test of H,.
But intuitively, only phony-baloney confirmation/testing has taken place.
A revised set of bootstrap conditions proposed by Glymour (1983) rule out
this particular example, but Christensen (1990) has shown how the coun-
terexamples can be revived in a more complicated form.!3

One could seek further restrictions to rule out the new counterexamples,
but this now seems to me to be a mistake—we do not want a once-and-
for-all answer to, Does E confirm H relative to T? that is independent of
the interpretation of the nonlogical constants in E, H, and T and also
independent of the background knowledge.

To make the point more concrete, let me use another of Christensen’s
examples, which is structurally identical to the above ravens case. Now T
is the logical closure of H,: (Vx)(Sx — Ax), and H,: (Vx)(Sx — Vx). H, is
intended to assert that anyone with certain disease symptoms has the
antibodies to a certain virus, while H, is intended to assert that anyone
with the said symptoms has been infected by the said virus. T contains
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Hj: (Vx)[Sx = (Ax < Vx)]. The evidence E: Sa & Aa, leads via H; to a
positive instance of H,, while the alternative possible evidence E': Sa &
T1Aa, leads via H, to a negative instance of H,. Although structurally
identical to the former example, we are not so ready to see phony-baloney
confirmation/testing here.

To diagnose the felt asymmetries between the two cases, we need to
know to what end the three-place Glymourian relation ‘E bootstrap-
confirms/tests H relative to T is to be put. E bootstrap-confirms H relative
to T cannot be taken to imply that, assuming T to be true or well con-
firmed, E confirms H, for in the cases at issue H is part of T. Rather, the
most plausible usage is in adjudicating questions of evidential relevance.
Note that in these examples Hempel’s version of the “prediction criteri-
on” of confirmation is satisfied; i.e., E is of the form E,; & E,, where
{T,E,} = E, but E, j# E,, while E' is of the form E) & E), where
{T,E,} = T1E, but E' ¥ T1E,. The antiholist then asks, if E is found to
hold, to which parts of T can the praise for the successful prediction be
attributed? If E’ is found to hold, on which parts of T can the blame for
the unsuccessful prediction be laid?

With this interpretation of bootstrapping, the Bayesian diagnosis of the
counterexamples is straightforward. H gets praise from E if, relative to K,
E incrementally confirms H, and H gets blame from E’ if, relative to K, H
is incrementally disconfirmed by E'. The bird-heaven case gave off a bad
odor since our current background knowledge K would have to be radical-
ly altered for Ra & Ba to incrementally confirm H, or for Ra & —1Ba to
incrementally disconfirm H,. Indeed, given the tenets of traditional empiri-
cism, we could never get to an alternative K where this would happen. By
contrast, the virus case smelled sweeter even though, from the point of view
of bootstrapping, it is structurally identical to the bird-heaven case. A
possible reason is that in the virus case H, will get praise from Sa & Aa
and blame from Sa & 71 4a if K makes likely the proposition that all and
only those people who have been infected by the virus have antibodies to
it, a not implausible situation.

It might be complained that while such a diagnosis does in fact help to
explain intuitions, it is irrelevant to the original project; the aim of that
project was to provide an internalist analysis of relevance relations, and
given that aim, it is illegitimate to bring in K. The response to this com-
plaint parallels the response to Hempel’s complaint that background infor-
mation about the relative sizes of the classes of ravens and nonblack things
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is irrelevant to his project, which concerns only the two-place relation ‘E
confirms H’; namely, no interesting account of confirmation can be devel-
oped if K is left out of the picture.

Aron Edidin (1988) has maintained that the core of the program of
relative confirmation is left untouched by Christensen’s examples. I think
that there is a sense in which Edidin’s contention is correct, but by the same
token I think that the program of relative confirmation can be seen to be
drained of much of its interest. Let us suppose that the core of the program
is concerned with the relation ‘E confirms H relative to auxiliaries 4’, where
typically the auxiliaries do not include H itself. Edidin’s point is that
there is nothing in Christensen’s examples to suggest that the apparatus
developed in Theory and Evidence is not adequate to provide a correct
explication of this relation. Thus in Christensen’s ravens example there is
nothing counterintuitive to maintaining that E: Ra & Ba, does confirm
H,: (Yx)(Rx — Hx), relative to the auxiliary assumption Hj: (Vx)[Rx —
(Bx <> Hx)]. This seems to me correct in the following respect: in the sense
in which Hempel could say that E: Ra & Ba, confirms H;: (Vx)(Rx — BXx),
it is also natural by extension to say that E confirms H, relative to Hj.

But if the core of the program of relative confirmation is left untouched,
it remains to ask what purpose is served by the program. Two responses
suggest themselves. First, we can hope to use the relation ‘E confirms H
relative to A’ to explicate theory-relative confirmation. Thus, we can say
that ‘E confirms H relative to T°, where T typically contains H, means that
there is an appropriate 4 in T such that E confirms H relative to A. Here
the appropriateness of A is supposed to guarantee that the resulting confir-
mation/disconfirmation of H relative to T by E implies that the praise/
blame for T’s passing/failing to pass an HD test can be attached to H. The
presumption of Theory and Evidence was that the appropriateness of A can
be settled purely in terms of structural relations among 4, H, E, and T. This
presumption is belied by the analysis above of Christensen’s examples,
which shows that the parceling out of praise and blame depends on
the epistemic status of A4, which in turn depends upon the background
knowledge.

The second response is that getting a handle on relative confirmation is
useful in deciding how evidence affects the credibility of hypotheses and in
turn the credibility of theories of which the hypotheses are parts. But again,
the epistemic status of the auxiliaries must be taken into account. Edidin’s
discussion indicates that the move from ‘E confirms H relative to A’ to ‘E
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contributes to the credibility of H’ is a tricky one; it requires not only that
the auxiliaries 4 “must themselves be credible.” In some cases it requires
also that “their credibility must be substantially independent of the credi-
bility of the evidence” (p. 268) and in other cases that they have “antecedent
credibility independent of that of the hypotheses” (p. 269). But what exactly
do these requirements come to? I submit that no precise answer can be
given without invoking the Bayesian apparatus. Further, the answer this
apparatus yields is that no answer can be given in the abstract: it depends
on the background information K, and it depends not just on the logico-
structural relations involved in the HD and bootstrapping account of rela-
tive confirmation but also on the intended interpretation of the nonlogical
terms in E, H, and A.

The complaint here is not that, on pain of circularity, HD or bootstrap-
ping relations of relative confirmation cannot figure in an account of how
evidence bears on the credibility of theoretical hypotheses; rather, the
complaint is that such relations may not contribute in any perspicuous
way to the assessment of that bearing. Consider again the simpler case of
the confirmation of observational hypotheses. How, for example, does
evidence about the color of ravens and nonravens bear on the credibility
of the hypothesis that all ravens are black? By now, I hope, the reader is
convinced that an illuminating path to an answer need not take the form
of first deciding when E Hempel-confirms H and then trying to puzzle out
the further conditions necessary for the move from Hempel-confirmation
to an incremental increase in credibility. The moral here has double
strength when we move from Hempel-confirmation of observational
hypotheses to the more complicated case of relative confirmation of theo-
retical hypotheses.

5 Variety of Evidence and the Limited Variety of Nature

It is a truism of scientific methodology that variety of evidence can be as
important or even more important than sheer amount of evidence. An
adequate account of confirmation is not under obligation to give an un-
qualified endorsement to all such truisms, but it should be able to identify
the valid rationale (if any) of such truisms.

A Bayesian explanation of the virtue of variety of evidence would con-
centrate on the ability of variety to contribute to a significant boost in the
posterior probability of a hypothesis. To illustrate how part of the explana-
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tion might go, consider again the HD case where H, K |= E, and suppose
that EisE, & E, & ... & E,, where the E; report the outcomes of perform-
ing some one experiment over and over or alternatively the outcomes of a
series of different experiments. The most helpful form of Bayes’s theorem
to cover this situation is

Pr(H/E & K)

3 Pr(H/K)
" Pr(E,/K) x Pr(E,/E, & K) x - x Pr(E,JE, & ... & E,_, & K)’
(3.9)

As we will see in chapter 4, if Pr(H/K) > 0, the factor Pr(E,/E, & ... &
E,_, & K) must go to 1 as n grows without bound. This factor gives the
probability of the next experimental outcome predicted by H, conditional
on the background information K and the information that the previous
predictions have been borne out. The more slowly this probability ap-
proaches 1, the smaller the denominator (for a given n) and hence the larger
the posterior probability of H (for a given n). This is exactly where variety
of evidence enters, for the more various the experiments, the slower one
would expect the approach to certainty to be for the next outcome.'* At
one extreme is the case where the E; are the outcomes of repeating the same
experiment consisting, say, of measuring over and over again a quantity
believed to have a stable value. Then with appropriate assumptions K
about the reliability of the measuring apparatus, only a few repetitions are
needed to achieve near certainty for the next instance, and amassing a large
number of further instances achieves little gain for the posterior probabili-
ty of H. At the other extreme is the case where the E; are the outcomes of
experiments that are not only different but seem quite unrelated. Then new
instances will make for a bigger gain in the posterior probability of H.!5

These remarks have value only if we already have a grip on the notion
of variety of evidence. But rather than trying to give an independent
analysis of variety, what I would like to suggest is that the observations
above can be given a new twist and used to define ‘variety of evidence’
through rate of increase in the factors

Pr(E,JE, & ... & E,_, & K).16

Such an analysis has two consequences, one of which is obvious, the other
of which is a little surprising.
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The obvious consequence is that the notion of variety of evidence has to
be relativized to the background assumptions K, but there is no more than
good scientific common sense here, since, for example, before the scientific
revolution the motions of the celestial bodies seemed to belong to a dif-
ferent variety than the motions of terrestrial projectiles, whereas after
Newton they seem like peas in a pod.

The less obvious consequence is that induction, or a necessary condition
for it, presupposes a limited variety in nature, as Keynes (1962) tried to
teach us. As already remarked, Pr(H/K) > 0, which is necessary for the
probabilification of H, implies that

Pr(E,JE, & ... & E,_, & K) - 1

as n — oo0. This means that from the point of view of the proposed analysis
of variety, E, for large enough n cannot be counted as various with respect
toE,,E,,..., E,_;, contrary to what our untutored intuitions might have
told us. The fact that the E; are unified in the very minimal sense of being
entailed by a single H to which we assign a nonzero prior eventually forces
us to see them as nonvarious.

Another aspect of the importance of variety of evidence arises in con-
junction with eliminative induction, whose virtues are touted in chapter 7.
Bayes’s theorem in the form (2.2) shows how the probability of a hypothe-
sis is boosted by evidence that eliminates rival hypotheses. Thus variety of
evidence can be analyzed from the point of view of how likely the evidence
is to produce efficient elimination.!”

6 Putnam and Hempel on the Indispensability of Theories

Induction by enumeration is inadequate for capturing many of the infer-
ences routinely made in the advanced sciences, as is brought out very
nicely by the following example of Putnam’s (1963a). Imagine that you
were a member of the Los Alamos Project during World War II. As you
prepare for the first test of what you hope will be an atomic bomb, you
consider prediction H: when these two subcritical masses of U,;s are
slammed together to form a supercritical mass, there will be an atomic
explosion. H has a counterpart in purely observational terms, namely H":
when these two rocks are slammed together, there will be a big bang. If E
is the sum of the directly relevant observations made up to this juncture,
there is no way for an inductivist who limits himself to simple enumeration
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to move from E to a confidence in H'. For up to now there have been no
recorded cases of rocks of this kind exploding, but there have been many
recorded cases of rocks of this kind being slammed together without
exploding (because critical mass was never reached). Nevertheless, you and
your fellow project scientists are confident of H'. Why?

The Bayesian is happy to supply the answer. You were in possession of
a theory T of the atomic nucleus that entails H'. Applying the principle of
total probability to the total available observational evidence E & E gives

Pr(H'/E & E) = Pr(T/E & E) + Pr(H'/1T& E & E) x Pr(11T/E & E).

Thus if your opinions conformed to the probability calculus, your confi-
dence in H' should have been at least as great as your confidence in 7. And
the combination of E and E made you somewhat confident of T (because,
for example, T entails other experimental regularities whose positive in-
stances are recorded by E). Further, 71T includes other theories that also
entail H' or make H' highly probable, and E & E made you somewhat
confident of those theories. The upshot was that you were more than
somewhat confident of H'.

Putnam used this story to register a complaint against any explication
of degree of confirmation that makes the confirmation of H' on E & E
independent of the presence or absence in the language of predicates not
occurring in H', E, or E (what Carnap in 1950 and 1952 called an inductive
method of the “first kind”). In terms of the present example, such an
explication implies that Pr(H'/E & E) can be assessed in a language that
contains only observational predicates. But since expressions involving T
cannot occur in such a language, the explanation above of the expectations
of the Los Alamos scientists cannot be stated in such a setting. To provide
an explanation within the strictures of an inductive method of the first
kind, it must be supposed that the scientists involved would have had the
same degree of confidence in H' had they never considered T, a highly
implausible supposition, to say the least. Of course, it could be replied that
the failure of inductive methods of the first kind to accord with the actual
psychology of scientists may be ignored, since the task of explicating
degree of confirmation is a normative rather than a descriptive one. The
rejoinder is that the normative status of a proposed explication comes into
question when the explication fails to accord with what the history of
science provides as paradigm cases of good inferences. In effect, Carnap
agreed with this rejoinder in his response to Putnam. He wrote that



Success Stories 81

for situations of this kind we must construct a new inductive logic which refers to
the theoretical language instead of the observational language. I would say that the
scientists at the time in question would indeed have been willing to bet on the
positive success of the first nuclear explosion on the basis of the available evidence,
including results of the relevant laboratory experiments. Inductive logic must
reconstruct this willingness by ascribing to c¢(H, E) a considerable positive value.'®
(1963b, p. 988)

Is there an argument here for scientific realism? Not much of one, but
something is better than nothing. Consider the position of an antirealist
who is neither an instrumentalist nor an inductive skeptic with respect to
observational predictions but who is an inductive skeptic with respect to
theoretical claims. In the Los Alamos example such an antirealist will
agree that reasonable expectations about the explosion prediction H' can
be formed on the basis of E & E. He also agrees that the nuclear theory T
has a truth value and that the proposition asserting that T is true is not
merely a disguised way of asserting that observational predictions of T
are correct. But he nevertheless denies that the observational evidence
E & E serves as a basis for a reasonable belief in the truth of T. Such an
antirealist is very much in the same position as someone who uses a
Carnapian method of the first kind, and whatever objections can be
brought against the latter can also be brought against the former.

The above considerations also help to illuminate Hempel’s (1958) pro-
posed resolution of the “theoretician’s dilemma.” On Hempel’s formula-
tion, the dilemma runs thus: either theoretical terms fulfill their function of
systematizing deductive connections among observation statements or
they don’t. If they don’t, they are obviously dispensable. If they do, they
are likewise dispensable, since Craig’s (1956) lemma shows that the obser-
vational consequences of an axiomatizable theory can always be reaxiom-
atized in purely observational vocabulary. Hence theoretical terms are
dispensable. Hempel’s response was that theories may be indispensable
because they serve to establish inductive as well as deductive connections.

T might be said to be essential to establishing inductive connections
among observables if there are observation sentences O, and O, such
that Pr(0,/T & 0,) > Pr(0,/0,), or more interestingly, if Pr(0,/T & 0,) >
Pr(0,/0; & 0,), where Oy is a sentence logically equivalent to the set of
observational consequences of T.'° The first condition is certainly satisfied
in the Los Alamos example with O, = E & E and 0, = H', and for sake of
argument we may suppose that the second condition is satisfied as well.



82 Chapter 3

But on further reflection, these facts do not by themselves establish the
claimed indispensability of T. In the Los Alamos example, the key question
is what degree of confidence to put in H' on the basis of the total available
evidence E & E. Thus in this example the claim that theories are indispens-
able for purposes of inductive systematization must be understood as the
claim that the evaluation of Pr(H'/E & E) depends in some essential way
on T. But what way is this? I suggest that the answer must be the one
supplied by my discussion of Putnam’s story. And I would further suggest
that the moral of the story can be generalized.

Suppose that for purposes of scientific investigation of a certain domain,
an inductive agent adopts a language % and a degree-of-belief function Pr
on the propositions o7 of . We may suppose that & is a purely observa-
tional language. Subsequently the agent expands her language to &/,
which includes theoretical predicates, and adopts a degree-of-belief func-
tion Pr’ for the propositions &/’ > &/ of the new language. Even though
she is a rational agent, it may very well be that Pr’ restricted to .« does not
coincide with her previous belief function Pr. Of course, this phenomenon
has nothing to do per se with the observational/theoretical distinction; it
is merely a corollary of the point that the probability assigned to a proposi-
tion may depend upon the possibility set in which the proposition is im-
bedded. The moral here has an intralanguage counterpart. Within, say, the
language of physics as it is constituted at any particular time, physicists are
explicitly aware of only a small portion of the possible theories that can be
formulated in the language. When new theories are formulated, the range
of the explicitly recognized possibilities being thereby expanded, the prob-
abilities of previously considered hypotheses and theories may change.
This matter is taken up in chapters 5 and 7.

A striking consequence emerges when we combine such morals with
Carnap’s principle of tolerance, according to which “everyone is free to use
the language most suited to his purpose” (1963a, p. 18). Since the exercise
of this freedom is guided to a large extent by pragmatic factors, and since
degree of confirmation is affected by the choice of language, the implica-
tion is that evidential support has a pragmatic dimension. Pure person-
alists will hardly be shocked by this consequence, but those who want
confirmation theory to deliver rational and objective degrees of belief may
not be so shock-proof.

Those who do find such a consequence repugnant may want to consider
restrictions on the principle of tolerance, but it is hard to see how a princi-
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pled intolerance is to be implemented. Alternatively, the consequence can
be avoided by doing confirmation theory in a universal language adequate
for reconstructing all past and future scientific endeavors. But even if such
a utopian scheme is possible, its relevance to the actual practice of science,
which takes place in a context far from utopia, is tenuous.?® Rather than
try to avoid the consequence, I recommend a cautious embrace. Chapter
7 gives a concrete example of one form the embrace might take.

7 The Quine and Duhem Problem

If hypotheticodeductivism were the only tool available for assessing evi-
dence, we would be at a loss in making judgments about how evidence
bears differentially on the components of a scientific theory. Some addi-
tional tool is thus sorely needed. In section 4, I found fault with Glymour’s
attempt to parcel out praise and blame using bootstrapping relations, and
I intimated that the parceling out is best accomplished with Bayesian
means. Sometimes a Bayesian analysis supports a kind of holism. Thus if
T consists of the conjunction of T; and T, and if T contradicts E & K, the
blame may attach to Tas a whole without sticking to either component T;
or T,. Indeed, Wesley Salmon (1973) has provided an example where,
relative to K, E incrementally confirms each of T; and T,, even though T
is refuted by E & K.?! In more typical cases of refutation, however, our
intuitions suggest that the blame does stick to one or another component
of the theory and also that it sticks more firmly to some components than
to others.

An example of how the Bayesian apparatus can be used to support such
intuitions in historically realistic cases has been given by Jon Dorling
(1979). Suppose that theory T consists of core hypotheses T; and auxiliary
assumptions T5; that T} & T, = E’; and finally that nature pronounces E,
which is incompatible with E’.22 Dorling assumes that T} is probabilisti-
cally irrelevant to T, (that is, Pr(T,/T,) = Pr(T3)), that the priors Pr(T;) =
k, and Pr(T;) = k, satisfy k; > k, and k, > .5, while the likelihoods
Pr(E/1T, & T,) = k3, Pr(E/T, & 1T,) = k4, and Pr(E/1T; & 1T;) =
ks satisfy k5 « ky, ks « 1. Then Bayes’s theorem shows that the blame falls
more heavily on the auxiliaries T, than on the core T;. If we take the time
to be the mid nineteenth century, T, to be Newton’s theory of motion and
gravitation, T, the assumption that tidal effects do not influence lunar
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secular acceleration, and E the observed secular acceleration of the moon,
then Dorling argues that plausible values of the relevant probabilities are
ki =.9, k, =.6, ky = .001, k, = ks = .05. With these values he finds that
Pr(T,/E) = .8976 and Pr(T,/E) = .003, so that the refuting evidence E only
slightly reduces the probability of the core of the theory, while strongly
undermining the auxiliary.?3

Assuming that Dorling’s reconstruction of the prevailing degrees of
belief is historically correct, we are presented with a Bayesian success story
in the form of an explanation of the attitudes and behavior displayed
by the scientific community during an important incident in nineteenth-
century astronomy. But what we don’t yet have is a solution to the Quine
and Duhem problem, at least not if what we demand of a solution is a
demonstration that one way of parceling out the blame is rationally justi-
fied while others are not. For it is perfectly compatible with Bayesian
personalism to assign values to k, through ks that make T, the goat while
rendering T, blameless.2* We have arrived at one aspect of the general
problem of the objectivity of scientific inference, a problem that will occupy
us from chapter 6 onward. I will note in advance that while much of the
attention on the Bayesian version of this problem has focused on the
assignments of prior probabilities, the assignments of likelihoods involves
equally daunting difficulties.

In the present context the difficulties can be illustrated by noting that
when T, & T, |- 1E but nature pronounces E, then blame attaches
squarely to T; in the sense that Pr(T;/E) « Pr(T;) just in case

Pr(E/T, & 1T,) x Pr(1T,/T,) « Pr(E/1T; & T,) x Pr(T,/1T})
+Pr(E/11T, & 1) xPr(1T,/1Th).

In general, none of the factors involved has an objective character, and a
large variability can be expected in the values assigned by different persons.
Dorling’s argument that this inequality fails in his historical case study is
based on the assumption that Pr(E/ 1T, & T,) is small—an assumption
Dorling takes to be justified because (he says) no plausible rival to New-
ton’s theory could predict E either quantitatively or qualitatively. This
justification succeeds if 717; is limited to rivals actually constructed by
nineteenth-century physicists. But a critic of this analysis might well ask
why pronouncements about what it is and isn’t rational to believe in the
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face of E should depend on the vicissitudes of which of the myriad possible
theories happened to be constructed by physicists of the time.

Let us attempt to add some objectivity by moving to a simple if unrealistic
case. Assume first that 7; and T, are probabilistically irrelevant to one
another. Assume second that we can parse 71T, as Tt v TZ v ... v T},
where the T} are pairwise inconsistent, and that we can parse 17T, as
T! v T? v ... v T, where the T/ are also pairwise inconsistent. Assume
finally that T, or any one of the T} when conjoined with T, or any one of
the Ty together entail a definite prediction for the phenomenon in ques-
tion. Then the condition for blame to attach to T; becomes

¥ Pr(T) <« [P ((_|2T))] x ¥ Pr(Ti) + [1;21% ] x ¥ Pr(T),

where the sum on j is taken over values such that T, & TS |- E, the sum
on i is taken over values such that T} & T, |- E, and the sum on k is taken
over values such that Tf & 71T, |- E (ie., Tf & T{ |- E for every value of
J)- At first this result is a little disconcerting, since in an effort to objectify
the problem, we have reduced it to one involving judgments of priors.
What we can hope is that the priors used in this context are posteriors
taken from another context and that the latter have been objectified
through the weight of accumulated evidence.

The result of accumulating evidence has been investigated by Redhead
(1980) under a different set of assumptions. He invites us to consider a
series of refutations of the core (T;) plus auxiliary (75). T; is replaced by T,
to accommodate the evidence E refuting T, & T,; then new data F that
refutes T; & T, is found; T, is replaced by T, to accommodate F; etc. If
each of the successive auxiliaries is given an 1n1t1a1 weight of .5, and if the
likelihoods of each new piece of evidence (given 17, & T, T; & 115,
or 11T} & 71T; ) are equal and substantially less than 1, then the proba-
bility of T is quickly driven down toward O by the series of refutations.
This is an interesting result, but it does not provide a resolution of the
original problem.

The upshot is that we have a highly qualified success for Bayesianism:
the apparatus provides for an illuminating representation of the Quine and
Duhem problem, but a satisfying solution turns on a solution to the
general problem of objectivity of scientific inference, a matter that will
occupy us in coming chapters.
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8 Conclusion

The reader does not have to share the details of the sentiments I have
expressed above to be convinced that applying the Bayesian apparatus to
topics like the paradox of the ravens, the variety of evidence, the role of
theories in scientific inference, and the problem of Quine and Duhem leads
to fruitful avenues of investigation. There are many more examples of
fruitfulness that could be given. Some will be developed in chapter 4 in the
context of responses to challenges to Bayesianism confirmation theory.
Others can be found in such Bayesian tracts as Rosenkrantz 1981, Hor-
wich 1982, and Howson and Urbach 1989. Franklin (1986, 1990) supplies
excellent case studies of experiments in physics and makes an attempt to
provide a Bayesian rationale for the strategies he sees experimental physi-
cists using to validate their results.
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1. For a thoroughgoing criticism of HD methodology, see Glymour 1980. For a defense, see
Horwich 1983, but see also Gemes 1990a.

2. Throughout this chapter it is assumed that standard first-order logic is operating.
3. Showing this is left as an exercise to the reader.

4. See Hempel’s (1945) discussion of the Nicod criterion of instance confirmation,; see also the
discussion of the ravens paradox in section 3.

S. Thus, although Ra & Ba does not directly Hempel-confirm Rb — Bb, it does Hempel-
confirm it, since Ra & Ba directly confirms (Vx)(Rx — Bx), which entails Rb — Bb.

6. John Norton has provided a neat technique for constructing counterexamples. Suppose
that an airplane has crashed in the jungle. Consider hypotheses that postulate that the crash
took place in specified areas, and consider evidence statements that delimit the possibilities
for the crash site. By representing these hypotheses and evidence statements on a Venn
diagram, the reader can easily produce counterexamples to the special consequence condition
and to each of the following seemingly plausible principles: (1) if E confirms H, and E
confirms H,, then E confirms H; & H,; (2) if E, and E, each confirm H and E, & E, is
self-consistent, then E; & E, confirms H; (3) if E refutes H; & H,, then E does not confirm
each of H, and H,. The reader should also note that the Popper and Miller argument studied
below in chapter 4 inadvertently provides another type of counterexample to Hempel’s
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special consequence condition, namely, H = H v E, but under minimal conditions, E
incrementally disconfirms H v T1E, even though it may confirm H.

7. Such uninteresting cases include those in which H can be written as H, v H,, where H, is
not a logical truth and its nonlogical vocabulary is purely observational.

8. In early versions of bootstrapping, the very hypothesis at issue was allowed to play the role
of one of the auxiliaries in the bootstrap calculations. Edidin (1983) and van Fraassen
(1983b) have argued that such macho bootstrapping is both undesirable and unneeded.

9. In this section I ignore Goodman’s problems. Thus, assume that all the predicates are
non-Goodmanized and “projectable.”

10. An exercise for the reader: prove these facts.

11. Suppose that the background knowledge K * specifies that the individuals a and ¢ are
random selections respectively from the class of ravens and the class of black things. It is
subsequently found that a is black and that c is a raven. Object a was a potential falsifier of
the ravens hypothesis H, while c was not. Does Ra & Ba give better confirmational value than
Rc & Bc? The reader is invited to explore this question in the Bayesian manner. Interpret
‘confirmational value’ in the incremental sense, and then begin (as always!) by writing out
Bayes’s theorem to determine the conditions under which

Pr(H/Ra & Ba & K*) > Pr(H/Rc & Bc & K*).

12. The ravens paradox remains one of the most contentious topics in all of confirmation
theory, and it would be naive to think that my remarks will dissolve the controversy.
However, I do hope that they serve to illustrate the fruitfulness of the Bayesian approach. For
a sampling of some recent opinions on the ravens paradox, see Lawson 1985, Watkins 1987,
French 1988, and Aronson 1989.

13. Similar examples can be worked out for van Fraassen’s (1983b) semantic version of
bootstrapping. To illustrate, take a theory T to be the closure under arithmetic operations of
a set of linear equations, and take a data set E to be an assignment of values to the directly
measurable quantities. Van Fraassen’s conditions for bootstrap testing are as follows. E tests
H relative to T just in case there is a T, = T and an alternative E’ to E such that (1) TUE
has a solution, (2) T, U E’ has a solution, (3) all solutions of T, U E are solutions of H, and (4)
no solution of T, U E’ is a solution of H. Take the axioms of T to be H;: 4 = B + C, and
H,: D = X, where X is the theoretical quantity and 4, B, C, D are the directly measurable
quantities. Intuitively, H, should not be testable relative to T. But the formal definition is
satisfied by taking Tytobe A —B— C + D = X,Etobe{4=2, B=1, C=1, D=3},and
E'tobe {4=2 B=1, C=2, D=3} Itis no good to complain that E’ contradicts H,,
since in bootstrap testing in general E’ will contradict some consequence of T.

14. This idea was developed by Grover Maxwell and myself in the mid 1970s and circulated
as a memo to members of the Minnesota Center for the Philosophy of Science. Similar ideas
were developed by Franklin and Howson (1984) and Franklin (1990).

15. Elliott Sober (private communication) has pointed out that the idea that
Pr(E,/&i<n-1 E: & K) increases more slowly when the E; are various is generally not correct
outside of the context of HD testing. By making the likelihood factor equal to 1, the HD
condition guarantees that the likelihood is independent of how varied the E; are. But as Sober
notes, in general this independence may fail, and when it fails, no conclusion can be drawn
about the connection between the variety of the E; and the value of ratios of the likelihood
and prior likelihood factors without knowing more about the details of the case.

16. A more sophisticated Bayesian analysis of variety of evidence might exploit the notion of
partial exchangeability (Diaconis and Freedman 1980). Roughly, there would be exchange-
ability (see chapter 4) within but not across different kinds. Variety of evidence would then
involve instances from the different kinds. The confirmational virtues of such evidence is
currently under study by Elizabeth Lloyd.



Notes to Pages 79-90 241

17. The connection between variety of evidence and eliminative induction is not a new idea;
see Horwich 1982, chapter 6. The two aspects of variety of evidence mentioned above may be
considered to belong to two different perspectives on evidence: posttrial evaluation (e.g., given
the outcomes, how is information about their variety relevant to how much they boost
the probability of the hypothesis?) versus experimental design (e.g., how is variety relevant to
the design of experiments whose outcomes are most likely to boost the probability of the
hypothesis?). A more detailed discussion of variety should pay careful attention to these
perspeciives. Here again I am indebted to Elliott Sober.

18. The symbolism c(H, E) was Carnap’s notation for the degree of confirmation of H on E;
see chapter 4 for more details about Carnap’s systems of inductive logic. Putnam thought
that Carnap’s inductive logic was subject to the following bind. “With respect to the actual
universe, each method of the second kind [where c(H, E) may not be independent of predi-
cates that occur in the language but not in H or E] coincides with some method of the first
kind.... Thus, if there is any adequate method of the second kind ..., there is also some
adequate method of the first kind” (1963a, p. 781). But we have seen above that methods of
the first kind are inadequate. I leave it to the reader to evaluate the force of this objection.

19. The existence of O, assumes that the observational consequences of T are finitely axio-
matizable. When this assumption fails, the second condition can be stated only if conditional
probability functions are defined for pairs of sets of sentences. It can be argued that for many
interesting theories, Oy is a tautology because no nontrivial observational consequences are
derivable without the help of theoretical initial/boundary conditions. In this case the second
condition reduces to the first.

20. Carnap might have been taken as having endorsed the possibility of such a utopian
scheme through his requirement of completeness. But that requirement applies only to the
observational language, as is made clear by the following fomulation taken from “On the
Application of Inductive Logic”: “Every qualitative property or relation of the individuals,
that is, every respect in which the positions of the universe may be found to differ by direct
observation, must be expressible in L” (Carnap 1947, p. 138). And Carnap’s views on the
incommensurability of different theoretical frameworks would seem to entail that a universal
language for all of science—past, present, and future—is impossible; see “Truth and Confir-
mation” (1949).

21. K implies that the atoms A and B decay independently; that in the decay process each
may emit exactly one of three particles, an « particle, an e”, or an e*; that the objective
probabilities of these three decay modes are respectively .7, .2, and .1; and that an annihilation
event occurs just in case one atom emits an e~ and the other an e*. T, asserts that 4 emits
ane”, T, that B emits an e”, and E that an annihilation event occurs. The device reported in
note 6 can also be used to construct other examples of this sort.

22. I have suppressed the background K to simplify the notation.

23. Additional historical cases are given a similar Bayesian reconstruction in Howson and
Urbach 1989.

24. A point emphasized by John Worrall (1991).
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