From b895ad012c22442151800347864a4b3f84f6de84 Mon Sep 17 00:00:00 2001 From: chris Date: Wed, 25 Feb 2015 21:34:42 -0500 Subject: [PATCH] --- topics/_week5_system_F.mdwn | 28 +++++++++++++--------------- 1 file changed, 13 insertions(+), 15 deletions(-) diff --git a/topics/_week5_system_F.mdwn b/topics/_week5_system_F.mdwn index 6b80c20a..ae0b7e05 100644 --- a/topics/_week5_system_F.mdwn +++ b/topics/_week5_system_F.mdwn @@ -119,13 +119,13 @@ relevant evaluator is called "fullpoly"): N = ∀α. (α->α)->α->α; Pair = (N->N->N) -> N; - let zero = α . λs:α->α . λz:α. z in - let fst = λx:N . λy:N . x in - let snd = λx:N . λy:N . y in - let pair = λx:N . λy:N . λz:N->N->N . z x y in - let suc = λn:N . λα . λlambda s:α->α . λz:α . s (n [α] s z) in - let shift = λp:Pair . pair (suc (p fst)) (p fst) in - let pre = λn:N . n [Pair] shift (pair zero zero) snd in + let zero = Λα. λs:α->α . λz:α. z in + let fst = λx:N. λy:N . x in + let snd = λx:N. λy:N . y in + let pair = λx:N. λy:N . λz:N->N->N . z x y in + let suc = λn:N. λα . λlambda s:α->α . λz:α. s (n [α] s z) in + let shift = λp:Pair. pair (suc (p fst)) (p fst) in + let pre = λn:N. n [Pair] shift (pair zero zero) snd in pre (suc (suc (suc zero))); @@ -165,19 +165,19 @@ Typing ω In fact, unlike in the simply-typed lambda calculus, it is even possible to give a type for ω in System F. -ω = lambda x:(∀ α. α->α) . x [∀ α . α->α] x +ω = λlambda x:(∀ α. α->α) . x [∀ α . α->α] x In order to see how this works, we'll apply ω to the identity function. ω id == - (lambda x:(∀ α . α->α) . x [∀ α . α->α] x) (lambda α . lambda x:α . x) + (λx:(∀α. α->α) . x [∀α.α->α] x) (Λα.λx:α. x) -Since the type of the identity function is `(∀ α . α->α)`, it's the +Since the type of the identity function is `∀α.α->α`, it's the right type to serve as the argument to ω. The definition of ω instantiates the identity function by binding the type -variable `α` to the universal type `∀ α . α->α`. Instantiating the +variable `α` to the universal type `∀α.α->α`. Instantiating the identity function in this way results in an identity function whose type is (in some sense, only accidentally) the same as the original fully polymorphic identity function. @@ -228,10 +228,8 @@ uses. Can we capture this using polymorphic types? With these basic types, we want to say something like this: - and:t->t->t = lambda l:t . lambda r:t . l r false - and = lambda α . lambda β . - lambda l:α->β . lambda r:α->β . - lambda x:α . and:β (l x) (r x) + and:t->t->t = λl:t. λr:t. l r false + and = Λα.Λβ.λl:α->β.λr:α->β.λx:α. and [β] (l x) (r x) The idea is that the basic *and* conjoins expressions of type `t`, and when *and* conjoins functional types, it builds a function that -- 2.11.0