From 9c7ca26e6dd0c1ce1b6cd653e27a083b7379a5dd Mon Sep 17 00:00:00 2001 From: Chris Barker Date: Tue, 30 Nov 2010 16:31:56 -0500 Subject: [PATCH] edits --- from_lists_to_continuations.mdwn | 50 +++++---- week11.mdwn | 237 --------------------------------------- 2 files changed, 26 insertions(+), 261 deletions(-) diff --git a/from_lists_to_continuations.mdwn b/from_lists_to_continuations.mdwn index 0b3f4643..f2e6989d 100644 --- a/from_lists_to_continuations.mdwn +++ b/from_lists_to_continuations.mdwn @@ -1,4 +1,3 @@ - Refunctionalizing zippers: from lists to continuations ------------------------------------------------------ @@ -148,10 +147,11 @@ The recipe for constructing the list goes like this: What is the type of each of these steps? Well, it will be a function from the result of the previous step (a list) to a new list: it will be a function of type `char list -> char list`. We'll call each step -a **continuation** of the recipe. So in this context, a continuation -is a function of type `char list -> char list`. For instance, the -continuation corresponding to the portion of the recipe below the -horizontal line is the function `fun (tail:char list) -> a::(b::tail)`. +(or group of steps) a **continuation** of the recipe. So in this +context, a continuation is a function of type `char list -> char +list`. For instance, the continuation corresponding to the portion of +the recipe below the horizontal line is the function `fun (tail:char +list) -> a::(b::tail)`. This means that we can now represent the unzipped part of our zipper--the part we've already unzipped--as a continuation: a function @@ -194,42 +194,44 @@ what the parallel would suggest. The reason is that `unzipped` is a list, but `c` is a function. That's the most crucial difference, the point of the excercise, and it should be emphasized. For instance, you can see this difference in the fact that in `tz`, we have to glue -together the two instances of `unzipped` with an explicit `List.append`. +together the two instances of `unzipped` with an explicit (and +relatively inefficient) `List.append`. In the `tc` version of the task, we simply compose `c` with itself: `c o c = fun x -> c (c x)`. Why use the identity function as the initial continuation? Well, if -you have already constructed the list "abSd", what's the next step in -the recipe to produce the desired result (which is the same list, -"abSd")? Clearly, the identity continuation. +you have already constructed the initial list `"abSd"`, what's the next +step in the recipe to produce the desired result, i.e, the very same +list, `"abSd"`? Clearly, the identity continuation. A good way to test your understanding is to figure out what the continuation function `c` must be at the point in the computation when `tc` is called with the first argument `"Sd"`. Two choices: is it -`fun x -> a::b::x`, or it is `fun x -> b::a::x`? -The way to see if you're right is to execute the following -command and see what happens: +`fun x -> a::b::x`, or it is `fun x -> b::a::x`? The way to see if +you're right is to execute the following command and see what happens: tc ['S'; 'd'] (fun x -> 'a'::'b'::x);; There are a number of interesting directions we can go with this task. -The task was chosen because the computation can be viewed as a +The reason this task was chosen is because it can be viewed as a simplified picture of a computation using continuations, where `'S'` plays the role of a control operator with some similarities to what is -often called `shift`. In the analogy, the list portrays a string of -functional applications, where `[f1; f2; f3; x]` represents `f1(f2(f3 -x))`. The limitation of the analogy is that it is only possible to -represent computations in which the applications are always -right-branching, i.e., the computation `((f1 f2) f3) x` cannot be -directly represented. +often called `shift`. In the analogy, the input list portrays a +sequence of functional applications, where `[f1; f2; f3; x]` represents +`f1(f2(f3 x))`. The limitation of the analogy is that it is only +possible to represent computations in which the applications are +always right-branching, i.e., the computation `((f1 f2) f3) x` cannot +be directly represented. One possibile development is that we could add a special symbol `'#'`, and then the task would be to copy from the target `'S'` only back to the closest `'#'`. This would allow the task to simulate delimited -continuations (for right-branching computations). +continuations with embedded prompts. + +The reason the task is well-suited to the list zipper is in part +because the list monad has an intimate connection with continuations. +The following section explores this connection. We'll return to the +list task after talking about generalized quantifiers below. + -The task is well-suited to the list zipper because the list monad has -an intimate connection with continuations. The following section -makes this connection. We'll return to the list task after talking -about generalized quantifiers below. diff --git a/week11.mdwn b/week11.mdwn index 8fcd0301..3daf56c5 100644 --- a/week11.mdwn +++ b/week11.mdwn @@ -511,243 +511,6 @@ So now, guess what would be the result of doing the following: - -Refunctionalizing zippers: from lists to continuations ------------------------------------------------------- - -If zippers are continuations reified (defuntionalized), then one route -to continuations is to re-functionalize a zipper. Then the -concreteness and understandability of the zipper provides a way of -understanding and equivalent treatment using continuations. - -Let's work with lists of chars for a change. To maximize readability, we'll -indulge in an abbreviatory convention that "abSd" abbreviates the -list `['a'; 'b'; 'S'; 'd']`. - -We will set out to compute a deceptively simple-seeming **task: given a -string, replace each occurrence of 'S' in that string with a copy of -the string up to that point.** - -We'll define a function `t` (for "task") that maps strings to their -updated version. - -Expected behavior: - -
-t "abSd" ~~> "ababd"
-
- - -In linguistic terms, this is a kind of anaphora -resolution, where `'S'` is functioning like an anaphoric element, and -the preceding string portion is the antecedent. - -This deceptively simple task gives rise to some mind-bending complexity. -Note that it matters which 'S' you target first (the position of the * -indicates the targeted 'S'): - -
-    t "aSbS" 
-        *
-~~> t "aabS" 
-          *
-~~> "aabaab"
-
- -versus - -
-    t "aSbS"
-          *
-~~> t "aSbaSb" 
-        *
-~~> t "aabaSb"
-           *
-~~> "aabaaabab"
-
- -versus - -
-    t "aSbS"
-          *
-~~> t "aSbaSb"
-           *
-~~> t "aSbaaSbab"
-            *
-~~> t "aSbaaaSbaabab"
-             *
-~~> ...
-
- -Aparently, this task, as simple as it is, is a form of computation, -and the order in which the `'S'`s get evaluated can lead to divergent -behavior. - -For now, we'll agree to always evaluate the leftmost `'S'`, which -guarantees termination, and a final string without any `'S'` in it. - -This is a task well-suited to using a zipper. We'll define a function -`tz` (for task with zippers), which accomplishes the task by mapping a -char list zipper to a char list. We'll call the two parts of the -zipper `unzipped` and `zipped`; we start with a fully zipped list, and -move elements to the zipped part by pulling the zipped down until the -entire list has been unzipped (and so the zipped half of the zipper is empty). - -
-type 'a list_zipper = ('a list) * ('a list);;
-
-let rec tz (z:char list_zipper) = 
-    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
-               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
-               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
-
-# tz ([], ['a'; 'b'; 'S'; 'd']);;
-- : char list = ['a'; 'b'; 'a'; 'b'; 'd']
-
-# tz ([], ['a'; 'S'; 'b'; 'S']);;
-- : char list = ['a'; 'a'; 'b'; 'a'; 'a'; 'b']
-
- -Note that this implementation enforces the evaluate-leftmost rule. -Task completed. - -One way to see exactly what is going on is to watch the zipper in -action by tracing the execution of `tz`. By using the `#trace` -directive in the Ocaml interpreter, the system will print out the -arguments to `tz` each time it is (recurcively) called. Note that the -lines with left-facing arrows (`<--`) show (recursive) calls to `tz`, -giving the value of its argument (a zipper), and the lines with -right-facing arrows (`-->`) show the output of each recursive call, a -simple list. - -
-# #trace tz;;
-t1 is now traced.
-# tz ([], ['a'; 'b'; 'S'; 'd']);;
-tz <-- ([], ['a'; 'b'; 'S'; 'd'])
-tz <-- (['a'], ['b'; 'S'; 'd'])         (* Pull zipper *)
-tz <-- (['b'; 'a'], ['S'; 'd'])         (* Pull zipper *)
-tz <-- (['b'; 'a'; 'b'; 'a'], ['d'])    (* Special step *)
-tz <-- (['d'; 'b'; 'a'; 'b'; 'a'], [])  (* Pull zipper *)
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']        (* Output reversed *)
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-- : char list = ['a'; 'b'; 'a'; 'b'; 'd'] 
-
- -The nice thing about computations involving lists is that it's so easy -to visualize them as a data structure. Eventually, we want to get to -a place where we can talk about more abstract computations. In order -to get there, we'll first do the exact same thing we just did with -concrete zipper using procedures. - -Think of a list as a procedural recipe: `['a'; 'b'; 'S'; 'd']` -is the result of the computation `a::(b::(S::(d::[])))` (or, in our old -style, `makelist a (makelist b (makelist S (makelist c empty)))`). -The recipe for constructing the list goes like this: - -
-(0)  Start with the empty list []
-(1)  make a new list whose first element is 'd' and whose tail is the list constructed in step (0)
-(2)  make a new list whose first element is 'S' and whose tail is the list constructed in step (1)
------------------------------------------
-(3)  make a new list whose first element is 'b' and whose tail is the list constructed in step (2)
-(4)  make a new list whose first element is 'a' and whose tail is the list constructed in step (3)
-
- -What is the type of each of these steps? Well, it will be a function -from the result of the previous step (a list) to a new list: it will -be a function of type `char list -> char list`. We'll call each step -(or group of steps) a **continuation** of the recipe. So in this -context, a continuation is a function of type `char list -> char -list`. For instance, the continuation corresponding to the portion of -the recipe below the horizontal line is the function `fun (tail:char -list) -> a::(b::tail)`. - -This means that we can now represent the unzipped part of our -zipper--the part we've already unzipped--as a continuation: a function -describing how to finish building the list. We'll write a new -function, `tc` (for task with continuations), that will take an input -list (not a zipper!) and a continuation and return a processed list. -The structure and the behavior will follow that of `tz` above, with -some small but interesting differences. We've included the orginal -`tz` to facilitate detailed comparison: - -
-let rec tz (z:char list_zipper) = 
-    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
-               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
-               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
-
-let rec tc (l: char list) (c: (char list) -> (char list)) =
-  match l with [] -> List.rev (c [])
-             | 'S'::zipped -> tc zipped (fun x -> c (c x))
-             | target::zipped -> tc zipped (fun x -> target::(c x));;
-
-# tc ['a'; 'b'; 'S'; 'd'] (fun x -> x);;
-- : char list = ['a'; 'b'; 'a'; 'b']
-
-# tc ['a'; 'S'; 'b'; 'S'] (fun x -> x);;
-- : char list = ['a'; 'a'; 'b'; 'a'; 'a'; 'b']
-
- -To emphasize the parallel, I've re-used the names `zipped` and -`target`. The trace of the procedure will show that these variables -take on the same values in the same series of steps as they did during -the execution of `tz` above. There will once again be one initial and -four recursive calls to `tc`, and `zipped` will take on the values -`"bSd"`, `"Sd"`, `"d"`, and `""` (and, once again, on the final call, -the first `match` clause will fire, so the the variable `zipper` will -not be instantiated). - -I have not called the functional argument `unzipped`, although that is -what the parallel would suggest. The reason is that `unzipped` is a -list, but `c` is a function. That's the most crucial difference, the -point of the excercise, and it should be emphasized. For instance, -you can see this difference in the fact that in `tz`, we have to glue -together the two instances of `unzipped` with an explicit (and -relatively inefficient) `List.append`. -In the `tc` version of the task, we simply compose `c` with itself: -`c o c = fun x -> c (c x)`. - -Why use the identity function as the initial continuation? Well, if -you have already constructed the initial list `"abSd"`, what's the next -step in the recipe to produce the desired result, i.e, the very same -list, `"abSd"`? Clearly, the identity continuation. - -A good way to test your understanding is to figure out what the -continuation function `c` must be at the point in the computation when -`tc` is called with the first argument `"Sd"`. Two choices: is it -`fun x -> a::b::x`, or it is `fun x -> b::a::x`? The way to see if -you're right is to execute the following command and see what happens: - - tc ['S'; 'd'] (fun x -> 'a'::'b'::x);; - -There are a number of interesting directions we can go with this task. -The reason this task was chosen is because it can be viewed as a -simplified picture of a computation using continuations, where `'S'` -plays the role of a control operator with some similarities to what is -often called `shift`. In the analogy, the input list portrays a -sequence of functional applications, where `[f1; f2; f3; x]` represents -`f1(f2(f3 x))`. The limitation of the analogy is that it is only -possible to represent computations in which the applications are -always right-branching, i.e., the computation `((f1 f2) f3) x` cannot -be directly represented. - -One possibile development is that we could add a special symbol `'#'`, -and then the task would be to copy from the target `'S'` only back to -the closest `'#'`. This would allow the task to simulate delimited -continuations with embedded prompts. - -The reason the task is well-suited to the list zipper is in part -because the list monad has an intimate connection with continuations. -The following section explores this connection. We'll return to the -list task after talking about generalized quantifiers below. - - Rethinking the list monad ------------------------- -- 2.11.0