From 85bd77d2f5fc08beca4d2d65ccf9a6cf81b4a658 Mon Sep 17 00:00:00 2001
From: Jim Pryor
Date: Mon, 20 Sep 2010 12:07:20 -0400
Subject: [PATCH 1/1] start linking to lambda calculators
Signed-off-by: Jim Pryor
---
assignment2.mdwn | 3 +
using_the_programming_languages.mdwn | 109 +++++++++++++++++++++++------------
2 files changed, 74 insertions(+), 38 deletions(-)
diff --git a/assignment2.mdwn b/assignment2.mdwn
index 066f1b1f..85f63f36 100644
--- a/assignment2.mdwn
+++ b/assignment2.mdwn
@@ -1,3 +1,6 @@
+For these assignments, you'll probably want to use a "lambda calculator" to check your work. This accepts any grammatical lambda expression and reduces it to normal form, when possible. See the page on [[using the programming languages]] for instructions and links about setting this up.
+
+
More Lambda Practice
--------------------
diff --git a/using_the_programming_languages.mdwn b/using_the_programming_languages.mdwn
index 2097dea2..bdba8d09 100644
--- a/using_the_programming_languages.mdwn
+++ b/using_the_programming_languages.mdwn
@@ -3,6 +3,75 @@ We assume here that you've already gotten [Schema and OCaml installed on your co
## Programming in the pure untyped lambda calculus ##
+There are several ways to do this.
+
+1. The easiest is to use a JavaScript interpreter that Chris wrote. Go [here](/lambda-let.html) and follow the template:
+
+ let true = (\x (\y x)) in
+ let false = (\x (\y y)) in
+ let and = (\l (\r ((l r) false))) in
+
+ (
+
+ ((((and false) false) yes) no)
+
+ ((((and false) true) yes) no)
+
+ ((((and true) false) yes) no)
+
+ ((((and true) true) yes) no)
+
+ )
+
+ will evaluate to:
+
+ (no no no yes)
+
+ If you try to evaluate a non-terminating form, like `((\x (x x)) (\x (x x)))`, you'll probably have to force-quit your browser and start over. Anything you had earlier typed in the upper box will probably be lost.
+
+ Syntax: you have to fully specify parentheses and separate your lambdas. So for example, you can't write `(\x y. y)`; you have to write `(\x (\y y))`. The parser treats symbols that haven't yet been bound (as `yes` and `no` above) as free variables.
+
+
+2. A bit more flexibility and robustness can be had by using an OCaml package. This is based on a library on [a Haskell library by Oleg Kiselyov](http://okmij.org/ftp/Computation/lambda-calc.html#lambda-calculator-haskell).
+
+ Jim converted this to OCaml and bundled it with a syntax extension that makes
+it easier to write pure untyped lambda expressions in OCaml. You don't have to
+know much OCaml yet to use it. Using it looks like this:
+
+ let zero = << fun s z -> z >>;;
+ let succ = << fun n s z -> s (n s z) >>;;
+ let one = << $succ$ $zero$ >>;;
+ let two = << $succ$ $one$ >>;;
+ let add = << fun m n -> n $succ$ m >>;;
+ (* or *)
+ let add = << fun m n -> fun s z -> m s (n s z) >>;;
+
+ church_to_int << $add$ $one$ $two$ >>;;
+ - : int = 3
+
+ To install this package, here's what you need to do. I've tried to explain it in basic terms, but you do need some familiarity with your operating system: for instance, how to open a Terminal window, how to figure out what directory the Terminal is open to (use `pwd`); how to change directories (use `cd`); and so on.
+
+ INCLUDE INSTRUCTIONS
+
+ Some notes:
+
+ * When you're talking to the interactive OCaml program, you have to finish complete statements with a ";;". Sometimes these aren't necessary, but rather than learn the rules yet about when you can get away without them, it's easiest to just use them consistently, like a period at the end of a sentence.
+
+ * What's written betwen the `<<` and `>>` is parsed as an expression in the pure untyped lambda calculus. The stuff outside the angle brackets is regular OCaml syntax. Here you only need to use a very small part of that syntax: `let var = some_value;;` assigns a value to a variable, and `function_foo arg1 arg2` applies the specified function to the specified arguments. `church_to_int` is a function that takes a single argument --- the lambda expression that follows it, `<< $add$ $one$ $two$ >>` -- and, if that expression when fully reduced or "normalized" has the form of a "Church numeral", it converts it into an "int", which is OCaml's (and most language's) primitive way to represent small numbers. The line `- : int = 3` is OCaml telling you that the expression you just had it evaluate simplifies to a value whose type is "int" and which in particular is the int 3.
+
+ * If you call `church_to_int` with a lambda expression that doesn't have the form of a Church numeral, it will complain. If you call it with something that's not even a lambda expression, it will complain in a different way.
+
+ * The `$`s inside the `<<` and `>>` are essentially corner quotes. If we do this: `let a = << x >>;; let b = << a >>;; let c = << $a$ >>;;` then the OCaml variable `b` will have as its value an (atomic) lambda expression, consisting just of the variable `a` in the untyped lambda calculus. On the other hand, the OCaml variable `c` will have as its value a lambda expression consisting just of the variable `x`. That is, here the value of the OCaml variable `a` is spliced into the lambda expression `<< $a$ >>`.
+
+ * The expression that's spliced in is done so as a single syntactic unit. In other words, the lambda expression `<< w x y z >>` is parsed via usual conventions as `<< (((w x) y) z) >>`. Here `<< x y >>` is not any single syntactic constituent. But if you do instead `let a = << x y >>;; let b = << w $a$ z >>`, then what you get *will* have `<< x y >>` as a constituent, and will be parsed as `<< ((w (x y)) z) >>`.
+
+ * `<< fun x y -> something >>` is equivalent to `<< fun x -> fun y -> something >>`, which is parsed as `<< fun x -> (fun y -> (something)) >>` (everything to the right of the arrow as far as possible is considered together). At the moment, this only works for up to five variables, as in `<< fun x1 x2 x3 x4 x5 -> something >>`.
+
+ * The `<< >>` and `$`-quotes aren't part of standard OCaml syntax, they're provided by this add-on bundle. For the most part it doesn't matter if other expressions are placed flush beside the `<<` and `>>`: you can do either `<< fun x -> x >>` or `<x>>`. But the `$`s *must* be separated from the `<<` and `>>` brackets with spaces or `(` `)`s. It's probably easiest to just always surround the `<<` and `>>` with spaces.
+
+
+
+
--
2.11.0