From 5ab9d6a956e6750c6aa46f97b724bffbb01a8d0f Mon Sep 17 00:00:00 2001 From: Chris Barker Date: Mon, 25 Oct 2010 15:06:51 -0400 Subject: [PATCH] edits --- assignment5.mdwn | 32 +++++++++++++++++--------------- 1 file changed, 17 insertions(+), 15 deletions(-) diff --git a/assignment5.mdwn b/assignment5.mdwn index bd89880e..72361897 100644 --- a/assignment5.mdwn +++ b/assignment5.mdwn @@ -142,10 +142,12 @@ Baby monads match x with None -> None | Some n -> f n;; -Booleans, Church numbers, and Church lists in System F ------------------------------------------------------- +Booleans, Church numbers, and Church lists in OCAML +--------------------------------------------------- These questions adapted from web materials written by some smart dude named Acar. +The idea is to get booleans, Church numbers, "Church" lists, and +binary trees working in OCAML. Recall from class System F, or the polymorphic λ-calculus. @@ -157,11 +159,10 @@ These questions adapted from web materials written by some smart dude named Acar bool := ∀α. α → α → α true := Λα. λt:α. λf :α. t false := Λα. λt:α. λf :α. f - ifτ e then e1 else e2 := e [τ ] e1 e2 (where τ indicates the type of e1 and e2) - Exercise 1. Show how to encode the following terms. Note that each of these terms, when applied to the + Note that each of the following terms, when applied to the appropriate arguments, return a result of type bool. (a) the term not that takes an argument of type bool and computes its negation; @@ -178,8 +179,8 @@ These questions adapted from web materials written by some smart dude named Acar encoding above, the result of that iteration can be any type α, as long as you have a base element z : α and a function s : α → α. - Exercise 2. Verify that these encodings (zero, succ , rec) typecheck in System F. - (Draw a type tree for each term.) + **Excercise**: get booleans and Church numbers working in OCAML, + including OCAML versions of bool, true, false, zero, succ, add. Consider the following list type: @@ -189,24 +190,25 @@ These questions adapted from web materials written by some smart dude named Acar τ list := ∀α. α → (τ → α → α) → α nilτ := Λα. λn:α. λc:τ → α → α. n - consτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) + makeListτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) - As with nats, The τ list type’s case analyzing elimination form is just application. + As with nats, recursion is built into the datatype. We can write functions like map: map : (σ → τ ) → σ list → τ list := λf :σ → τ. λl:σ list. l [τ list] nilτ (λx:σ. λy:τ list. consτ (f x) y - Exercise 3. Consider the following simple binary tree type: + **Excercise** convert this function to OCAML. Also write an `append` function. + Test with simple lists. - datatype ’a tree = Leaf | Node of ’a tree * ’a * ’a tree + Consider the following simple binary tree type: - (a) Give a System F encoding of binary trees, including a definition of the type τ tree and definitions of - the constructors leaf : τ tree and node : τ tree → τ → τ tree → τ tree. + type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree - (b) Write a function height : τ tree → nat. You may assume the above encoding of nat as well as definitions - of the functions plus : nat → nat → nat and max : nat → nat → nat. + **Excercise** + Write a function `sumLeaves` that computes the sum of all the + leaves in an int tree. - (c) Write a function in-order : τ tree → τ list that computes the in-order traversal of a binary tree. You + Write a function `inOrder` : τ tree → τ list that computes the in-order traversal of a binary tree. You may assume the above encoding of lists; define any auxiliary functions you need. -- 2.11.0