(no commit message)
authorbarker <barker@web>
Sat, 18 Sep 2010 20:18:23 +0000 (16:18 -0400)
committerLambda Wiki <lambda@SERVER.PHILOSOPHY.FAS.NYU.EDU>
Sat, 18 Sep 2010 20:18:23 +0000 (16:18 -0400)
week2.mdwn

index f7bb440..13fd1c8 100644 (file)
@@ -136,6 +136,8 @@ The third rule should be obvious.
 The fourth rule should also be fairly self-evident: since what a lambda term such as `\x.y` does it throw away its first argument and return `y`, that's exactly what the combinatory logic translation should do.  And indeed, `Ky` is a function that throws away its argument and returns `y`.
 The fifth rule deals with an abstract whose body is an application: the S combinator takes its next argument (which will fill the role of the original variable a) and copies it, feeding one copy to the translation of \a.M, and the other copy to the translation of \a.N.  Finally, the last rule says that if the body of an abstract is itself an abstract, translate the inner abstract first, and then do the outermost.  (Since the translation of [\b.M] will not have any lambdas in it, we can be sure that we won't end up applying rule 6 again in an infinite loop.)
 
+[Fussy notes: if the original lambda term has free variables in it, so will the combinatory logic translation.  Feel free to worry about this, though you should be confident that it makes sense.  You should also convince yourself that if the original lambda term contains no free variables---i.e., is a combinator---then the translation will consist only of S, K, and I (plus parentheses).  One other detail: this translation algorithm builds expressions that combine lambdas with combinators.  For instance, the translation of `\x.\y.y` is `[\x[\y.y]] = [\x.I] = KI`.  In that intermediate stage, we have `\x.I`.  It's possible to avoid this, but it takes some careful thought.  See, e.g., Barendregt 1984, page 156.]
+
 Here's an example of the translation:
 
     [\x\y.yx] = [\x[\y.yx]] = [\x.S[\y.y][\y.x]] = [\x.(SI)(Kx)] = S[\x.SI][\x.Kx] = S(K(SI))(S[\x.K][\x.x]) = S(K(SI))(S(KK)I)
@@ -163,17 +165,24 @@ enterprise Free Variable Free Semantics.
 
 A philosophical application: Quine went through a phase in which he developed a variable free logic.
 
-
-
-
-
-
-
-
-
-
-[Fussy notes: if the original lambda term has free variables in it, so will the combinatory logic translation.  Feel free to worry about this, though you should be confident that it makes sense.  You should also convince yourself that if the original lambda term contains no free variables---i.e., is a combinator---then the translation will consist only of S, K, and I (plus parentheses).  One other detail: this translation algorithm builds expressions that combine lambdas with combinators.  For instance, the translation of `\x.\y.y` is `[\x[\y.y]] = [\x.I] = KI`.  In that intermediate stage, we have `\x.I`.  It's possible to avoid this, but it takes some careful thought.  See, e.g., Barendregt 1984, page 156.]
-
+  Quine, Willard. 1960.  Variables explained away.  {\it Proceedings of                                                                                                                                
+  the American Philosophical Society}.  Volume 104: 343--347.  Also in
+  W.~V.~Quine.  1960. {\it Selected Logical Papers}.  Random House: New
+  York.  227--235.
+
+The reason this was important to Quine is similar to the worries that Jim was talking about
+in the first class in which using non-referring expressions such as Santa Clause might commit 
+one to believing in non-existant things.  Quine's slogan was that `to be is to be the value of a variable'.
+What this was supposed to mean is that if and only if an object could serve as the value of some variable, we 
+are committed to recognizing the existence of that object in our ontology.
+Obviously, if there ARE no variables, this slogan has to be rethought.
+
+Quine did not appear to appreciate that Shoenfinkel had already invented combinatory logic, though
+he later wrote an introduction to Shoenfinkel's key paper reprinted in Jean
+van Heijenoort (ed) 1967 *From Frege to Goedel,                                                                                                                               
+  a source book in mathematical logic, 1879--1931*.
+Cresswell has also developed a variable-free approach of some philosophical and linguistic interest
+in two books in the 1990's.
 
 These systems are Turing complete. In other words: every computation we know how to describe can be represented in a logical system consisting of only a single primitive operation!