edits
authorChris <chris.barker@nyu.edu>
Tue, 12 May 2015 13:32:10 +0000 (09:32 -0400)
committerChris <chris.barker@nyu.edu>
Tue, 12 May 2015 13:32:10 +0000 (09:32 -0400)
topics/_week15_continuation_applications.mdwn

index b56fcc0..6eeaf8f 100644 (file)
@@ -126,7 +126,8 @@ a  __|___
          S  e
 </pre>
 
-First we QR the lower shift operator
+First we QR the lower shift operator, replacing it with a variable and
+abstracting over that variable.
 
 <!--
 \tree (. (S) ((\\x) ((a)((S)((d)((x)(e)))))))
@@ -178,7 +179,7 @@ S  ___|____
 
 We then evaluate, using the same value for the shift operator proposed before:
 
-    shift = \k.k(k "")
+    S = shift = \k.k(k "")
 
 It will be easiest to begin evaluating this tree with the lower shift
 operator (we get the same result if we start with the upper one).
@@ -261,8 +262,8 @@ a  ___|____           |      |
 The yield of this tree (the sequence of leaf nodes) is
 aadadeedaadadeedee, which is the expected output of the double-shifted tree.
 
-Exercise: the result is different, by the way, if the QR occurs in a
-different order.
+Exercise: the result is different, by the way, if the QR occurs in the
+opposite order.
 
 Three lessons:
 
@@ -271,7 +272,9 @@ Three lessons:
   dramatic increase in power and complexity.
 
 * Operators that
-  compose multiple copies of a context can be hard to understand.
+  compose multiple copies of a context can be hard to understand
+  (though keep this in mind when we see the continuations-based
+  analysis of coordination, which involves context doubling).
 
 * When considering two-sided, tree-based continuation operators,
   quantifier raising is a good tool for visualizing (defunctionalizing)
@@ -310,8 +313,8 @@ space:
 
 <pre>
     _______________               _______________           _______________ 
-    | [x->2, y->3] |             | [x->2, y->3] |          | [x->2, y->3] |
-  -------------------          ------------------         ------------------
+    | [x->2, y->3] |             | [x->2, y->3] |          | [x->2, y->3] |
+  -------------------           ------------------        ------------------
     |              |     ¢        |              |    =     |              |
     |    +2        |             |     y        |          |     5        |
     |______________|             |______________|          |______________|
@@ -331,14 +334,18 @@ We won't keep the outer box, but we will keep the horizontal line
 dividing main effects from side-effects.
 
 Tower convention for types:
+<pre>
                                               γ | β
     (α -> β) -> γ can be equivalently written ----- 
                                                 α
+</pre>
 
 Tower convention for values:
+<pre>
                                            g[] 
     \k.g[k(x)] can be equivalently written ---
                                             x
+</pre>
 
 If \k.g[k(x)] has type (α -> β) -> γ, then k has type (α -> β).
 
@@ -351,12 +358,15 @@ individuals) and S (the type of truth values).
 Then in the spirit of monadic thinking, we'll have a way of lifting an
 arbitrary value into the tower system:
 
-                                           []    γ
-    LIFT (x:α) = \k.kx : (α -> Î²) -> Î³ ==  --- : ---
-                                           x      α
+                                           []   β
+    LIFT (x:α) = \k.kx : (α -> Î²) -> Î² ==  -- : ---
+                                           x     α
 
 Obviously, LIFT is exactly the midentity (the unit) for the continuation monad.
-The name comes from Partee's 1987 theory of type-shifters for
+Notice that LIFT requires the result type of the continuation argument
+and the result type of the overall expression to match (here, both are β).
+
+The name LIFT comes from Partee's 1987 theory of type-shifters for
 determiner phrases.  Importantly, LIFT applied to an
 individual-denoting expression yields the generalized quantifier
 proposed by Montague as the denotation for proper names:
@@ -369,6 +379,14 @@ So if the proper name *John* denotes the individual j, LIFT(j) is the
 generalized quantifier that maps each property k of type DP -> S to true
 just in case kj is true.
 
+Crucially for the discussion here, LIFT does not apply only to DPs, as
+in Montague and Partee, but to any expression whatsoever.  For
+instance, here is LIFT applied to a lexical verb phrase:
+
+                                                   []     S|S 
+    LIFT (left:DP\S) = \k.kx : (DP\S -> S) -> S == ---- : ---
+                                                   left   DP
+
 Once we have expressions of type (α -> β) -> γ, we'll need to combine
 them.  We'll use the ¢ operator from the continuation monad: