```-t "abSd" ~~> "ababd"
-```
- - -In linguistic terms, this is a kind of anaphora -resolution, where `'S'` is functioning like an anaphoric element, and -the preceding string portion is the antecedent. - -This deceptively simple task gives rise to some mind-bending complexity. -Note that it matters which 'S' you target first (the position of the * -indicates the targeted 'S'): - -
```-    t "aSbS"
-        *
-~~> t "aabS"
-          *
-~~> "aabaab"
-```
- -versus - -
```-    t "aSbS"
-          *
-~~> t "aSbaSb"
-        *
-~~> t "aabaSb"
-           *
-~~> "aabaaabab"
-```
- -versus - -
```-    t "aSbS"
-          *
-~~> t "aSbaSb"
-           *
-~~> t "aSbaaSbab"
-            *
-~~> t "aSbaaaSbaabab"
-             *
-~~> ...
-```
- -Aparently, this task, as simple as it is, is a form of computation, -and the order in which the `'S'`s get evaluated can lead to divergent -behavior. - -For now, we'll agree to always evaluate the leftmost `'S'`, which -guarantees termination, and a final string without any `'S'` in it. - -This is a task well-suited to using a zipper. We'll define a function -`tz` (for task with zippers), which accomplishes the task by mapping a -char list zipper to a char list. We'll call the two parts of the -zipper `unzipped` and `zipped`; we start with a fully zipped list, and -move elements to the zipped part by pulling the zipped down until the -entire list has been unzipped (and so the zipped half of the zipper is empty). - -
```-type 'a list_zipper = ('a list) * ('a list);;
-
-let rec tz (z:char list_zipper) =
-    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
-               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped)
-               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
-
-# tz ([], ['a'; 'b'; 'S'; 'd']);;
-- : char list = ['a'; 'b'; 'a'; 'b'; 'd']
-
-# tz ([], ['a'; 'S'; 'b'; 'S']);;
-- : char list = ['a'; 'a'; 'b'; 'a'; 'a'; 'b']
-```
- -Note that this implementation enforces the evaluate-leftmost rule. -Task completed. - -One way to see exactly what is going on is to watch the zipper in -action by tracing the execution of `tz`. By using the `#trace` -directive in the Ocaml interpreter, the system will print out the -arguments to `tz` each time it is (recurcively) called. Note that the -lines with left-facing arrows (`<--`) show (recursive) calls to `tz`, -giving the value of its argument (a zipper), and the lines with -right-facing arrows (`-->`) show the output of each recursive call, a -simple list. - -
```-# #trace tz;;
-t1 is now traced.
-# tz ([], ['a'; 'b'; 'S'; 'd']);;
-tz <-- ([], ['a'; 'b'; 'S'; 'd'])
-tz <-- (['a'], ['b'; 'S'; 'd'])         (* Pull zipper *)
-tz <-- (['b'; 'a'], ['S'; 'd'])         (* Pull zipper *)
-tz <-- (['b'; 'a'; 'b'; 'a'], ['d'])    (* Special step *)
-tz <-- (['d'; 'b'; 'a'; 'b'; 'a'], [])  (* Pull zipper *)
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']        (* Output reversed *)
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-tz --> ['a'; 'b'; 'a'; 'b'; 'd']
-- : char list = ['a'; 'b'; 'a'; 'b'; 'd']
-```
- -The nice thing about computations involving lists is that it's so easy -to visualize them as a data structure. Eventually, we want to get to -a place where we can talk about more abstract computations. In order -to get there, we'll first do the exact same thing we just did with -concrete zipper using procedures. - -Think of a list as a procedural recipe: `['a'; 'b'; 'S'; 'd']` -is the result of the computation `a::(b::(S::(d::[])))` (or, in our old -style, `makelist a (makelist b (makelist S (makelist c empty)))`). -The recipe for constructing the list goes like this: - -
```-(0)  Start with the empty list []
-(1)  make a new list whose first element is 'd' and whose tail is the list constructed in step (0)
-(2)  make a new list whose first element is 'S' and whose tail is the list constructed in step (1)
------------------------------------------
-(3)  make a new list whose first element is 'b' and whose tail is the list constructed in step (2)
-(4)  make a new list whose first element is 'a' and whose tail is the list constructed in step (3)
-```
- -What is the type of each of these steps? Well, it will be a function -from the result of the previous step (a list) to a new list: it will -be a function of type `char list -> char list`. We'll call each step -(or group of steps) a **continuation** of the recipe. So in this -context, a continuation is a function of type `char list -> char -list`. For instance, the continuation corresponding to the portion of -the recipe below the horizontal line is the function `fun (tail:char -list) -> a::(b::tail)`. - -This means that we can now represent the unzipped part of our -zipper--the part we've already unzipped--as a continuation: a function -describing how to finish building the list. We'll write a new -function, `tc` (for task with continuations), that will take an input -list (not a zipper!) and a continuation and return a processed list. -The structure and the behavior will follow that of `tz` above, with -some small but interesting differences. We've included the orginal -`tz` to facilitate detailed comparison: - -
```-let rec tz (z:char list_zipper) =
-    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
-               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped)
-               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
-
-let rec tc (l: char list) (c: (char list) -> (char list)) =
-  match l with [] -> List.rev (c [])
-             | 'S'::zipped -> tc zipped (fun x -> c (c x))
-             | target::zipped -> tc zipped (fun x -> target::(c x));;
-
-# tc ['a'; 'b'; 'S'; 'd'] (fun x -> x);;
-- : char list = ['a'; 'b'; 'a'; 'b']
-
-# tc ['a'; 'S'; 'b'; 'S'] (fun x -> x);;
-- : char list = ['a'; 'a'; 'b'; 'a'; 'a'; 'b']
-```