XGitUrl: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=using_the_programming_languages.mdwn;h=6952e4995bbddbabd71a24cd0c4ed64462947a22;hp=9faaad4f34de5b53d4778cb8e6ea003b2a305f04;hb=df6a6fe6807edabf1b3c3e904eb2ead20eedf0ca;hpb=d773dfc0b5aab6bc79f9a6990af79aed988648f4
diff git a/using_the_programming_languages.mdwn b/using_the_programming_languages.mdwn
index 9faaad4f..6952e499 100644
 a/using_the_programming_languages.mdwn
+++ b/using_the_programming_languages.mdwn
@@ 1,8 +1,86 @@
We assume here that you've already gotten [Schema and OCaml installed on your computer](/how_to_get_the_programming_languages_running_on_your_computer/).

## Programming in the pure untyped lambda calculus ##
+There are several ways to do this.
+
+1. The easiest is to use a JavaScript interpreter that Chris wrote. Go [here](/lambdalet.html) and follow the template:
+
+ let true = (\x (\y x)) in
+ let false = (\x (\y y)) in
+ let and = (\l (\r ((l r) false))) in
+
+ (
+
+ ((((and false) false) yes) no)
+
+ ((((and false) true) yes) no)
+
+ ((((and true) false) yes) no)
+
+ ((((and true) true) yes) no)
+
+ )
+
+ will evaluate to:
+
+ (no no no yes)
+
+ If you try to evaluate a nonterminating form, like `((\x (x x)) (\x (x x)))`, you'll probably have to forcequit your browser and start over. Anything you had earlier typed in the upper box will probably be lost.
+
+ Syntax: you have to fully specify parentheses and separate your lambdas. So for example, you can't write `(\x y. y)`; you have to write `(\x (\y y))`. The parser treats symbols that haven't yet been bound (as `yes` and `no` above) as free variables.
+
+
+2. A bit more flexibility and robustness can be had by using an OCaml package. This is based on a library on [a Haskell library by Oleg Kiselyov](http://okmij.org/ftp/Computation/lambdacalc.html#lambdacalculatorhaskell).
+
+ Jim converted this to OCaml and bundled it with a syntax extension that makes
+it easier to write pure untyped lambda expressions in OCaml. You don't have to
+know much OCaml yet to use it. Using it looks like this:
+
+ let zero = << fun s z > z >>;;
+ let succ = << fun n s z > s (n s z) >>;;
+ let one = << $succ$ $zero$ >>;;
+ let two = << $succ$ $one$ >>;;
+ let add = << fun m n > n $succ$ m >>;;
+ (* or *)
+ let add = << fun m n > fun s z > m s (n s z) >>;;
+ .
+ (* now use:
+ pp FORMULA to print a formula, unreduced
+ pn FORMULA to print the normal form of a formula (when possible)
+ pi FORMULA to print the integer which FORMULA is a Church numeral for (when possible)
+ .
+ alpha_eq FORM1 FORM2 are FORM1 and FORM2 syntactically equivalent (up to alphaconversion)?
+ this does not do reductions on the formulae
+ *)
+ .
+ pi << $add$ $one$ $two$ >>;;
+  : int = 3
+
+ To install this package, here's what you need to do. I've tried to explain it in basic terms, but you do need some familiarity with your operating system: for instance, how to open a Terminal window, how to figure out what directory the Terminal is open to (use `pwd`); how to change directories (use `cd`); and so on.
+
+ INCLUDE INSTRUCTIONS
+
+ We assume here that you've already [gotten OCaml installed on your computer](/how_to_get_the_programming_languages_running_on_your_computer/).
+
+ Some notes:
+
+ * When you're talking to the interactive OCaml program, you have to finish complete statements with a ";;". Sometimes these aren't necessary, but rather than learn the rules yet about when you can get away without them, it's easiest to just use them consistently, like a period at the end of a sentence.
+
+ * What's written betwen the `<<` and `>>` is parsed as an expression in the pure untyped lambda calculus. The stuff outside the angle brackets is regular OCaml syntax. Here you only need to use a very small part of that syntax: `let var = some_value;;` assigns a value to a variable, and `function_foo arg1 arg2` applies the specified function to the specified arguments. `church_to_int` is a function that takes a single argument  the lambda expression that follows it, `<< $add$ $one$ $two$ >>`  and, if that expression when fully reduced or "normalized" has the form of a "Church numeral", it converts it into an "int", which is OCaml's (and most language's) primitive way to represent small numbers. The line ` : int = 3` is OCaml telling you that the expression you just had it evaluate simplifies to a value whose type is "int" and which in particular is the int 3.
+
+ * If you call `church_to_int` with a lambda expression that doesn't have the form of a Church numeral, it will complain. If you call it with something that's not even a lambda expression, it will complain in a different way.
+
+ * The `$`s inside the `<<` and `>>` are essentially corner quotes. If we do this: `let a = << x >>;; let b = << a >>;; let c = << $a$ >>;;` then the OCaml variable `b` will have as its value an (atomic) lambda expression, consisting just of the variable `a` in the untyped lambda calculus. On the other hand, the OCaml variable `c` will have as its value a lambda expression consisting just of the variable `x`. That is, here the value of the OCaml variable `a` is spliced into the lambda expression `<< $a$ >>`.
+
+ * The expression that's spliced in is done so as a single syntactic unit. In other words, the lambda expression `<< w x y z >>` is parsed via usual conventions as `<< (((w x) y) z) >>`. Here `<< x y >>` is not any single syntactic constituent. But if you do instead `let a = << x y >>;; let b = << w $a$ z >>`, then what you get *will* have `<< x y >>` as a constituent, and will be parsed as `<< ((w (x y)) z) >>`.
+
+ * `<< fun x y > something >>` is equivalent to `<< fun x > fun y > something >>`, which is parsed as `<< fun x > (fun y > (something)) >>` (everything to the right of the arrow as far as possible is considered together). At the moment, this only works for up to five variables, as in `<< fun x1 x2 x3 x4 x5 > something >>`.
+
+ * The `<< >>` and `$`quotes aren't part of standard OCaml syntax, they're provided by this addon bundle. For the most part it doesn't matter if other expressions are placed flush beside the `<<` and `>>`: you can do either `<< fun x > x >>` or `<x>>`. But the `$`s *must* be separated from the `<<` and `>>` brackets with spaces or `(` `)`s. It's probably easiest to just always surround the `<<` and `>>` with spaces.
+
+
+
+