X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=topics%2F_week5_system_F.mdwn;h=f75370908dfe78fb0f081af4b6cbb074402e27b4;hp=e69eeb4d2447b9b4dcc89f1291519c345fbb8799;hb=9873c23f4967dc8a1dc03bd57a20bf73db1ac721;hpb=de7e75d334623860b686900be73418598e5dccb7 diff --git a/topics/_week5_system_F.mdwn b/topics/_week5_system_F.mdwn index e69eeb4d..f7537090 100644 --- a/topics/_week5_system_F.mdwn +++ b/topics/_week5_system_F.mdwn @@ -116,15 +116,15 @@ however. Here is one way, coded in System F|http://www.cis.upenn.edu/~bcpierce/tapl/index.html]] (the relevant evaluator is called "fullpoly"): - N = ∀α. (α->α)->α->α; - Pair = (N->N->N) -> N; - let zero = Λα. λs:α->α . λz:α. z in - let fst = λx:N. λy:N . x in - let snd = λx:N. λy:N . y in - let pair = λx:N. λy:N . λz:N->N->N . z x y in - let suc = λn:N. λα . λlambda s:α->α . λz:α. s (n [α] s z) in - let shift = λp:Pair. pair (suc (p fst)) (p fst) in - let pre = λn:N. n [Pair] shift (pair zero zero) snd in + N = ∀α.(α->α)->α->α; + Pair = (N->N->N)->N; + let zero = Λα.λs:α->α.λz:α.z in + let fst = λx:N.λy:N.x in + let snd = λx:N.λy:N.y in + let pair = λx:N.λy:N.λz:N->N->N.z x y in + let suc = λn:N.λα.λs:α->α.λz:α.s (n [α] s z) in + let shift = λp:Pair.pair (suc (p fst)) (p fst) in + let pre = λn:N.n [Pair] shift (pair zero zero) snd in pre (suc (suc (suc zero))); @@ -137,7 +137,7 @@ lambda). The key to the extra expressive power provided by System F is evident in the typing imposed by the definition of `pre`. The variable `n` is -typed as a Church number, i.e., as `∀ α . (α->α)->α->α`. The type +typed as a Church number, i.e., as `∀α.(α->α)->α->α`. The type application `n [Pair]` instantiates `n` in a way that allows it to manipulate ordered pairs: `n [Pair]: (Pair->Pair)->Pair->Pair`. In other words, the instantiation turns a Church number into a @@ -164,14 +164,14 @@ Typing ω In fact, unlike in the simply-typed lambda calculus, it is even possible to give a type for ω in System F. -ω = λlambda x:(∀ α. α->α) . x [∀ α . α->α] x +ω = λx:(∀α.α->α).x [∀α.α->α] x In order to see how this works, we'll apply ω to the identity function. ω id == - (λx:(∀α. α->α) . x [∀α.α->α] x) (Λα.λx:α. x) + (λx:(∀α.α->α). x [∀α.α->α] x) (Λα.λx:α.x) Since the type of the identity function is `∀α.α->α`, it's the right type to serve as the argument to ω. The definition of