X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=topics%2F_week5_system_F.mdwn;h=4afb43bae5fd783c4007e9158ab3a15bb44858fd;hp=72d07b318daec8fd4905bcc117bf32b963f14aec;hb=c09bd7005b179db8ab4c09c4c60be32d1a1c8881;hpb=ff25a9d147e987d8529b371ac71984d0e85216ef diff --git a/topics/_week5_system_F.mdwn b/topics/_week5_system_F.mdwn index 72d07b31..4afb43ba 100644 --- a/topics/_week5_system_F.mdwn +++ b/topics/_week5_system_F.mdwn @@ -70,7 +70,7 @@ variables in its body, except that unlike λ, Λ binds type variables instead of expression variables. So in the expression -Λ 'a (λ x:'a . x) +Λ Î± (λ x:α . x) the Λ binds the type variable `'a` that occurs in the λ abstract. Of course, as long as type @@ -200,6 +200,89 @@ be strongly normalizing, from which it follows that System F is not Turing complete. +## Polymorphism in natural language + +Is the simply-typed lambda calclus enough for analyzing natural +language, or do we need polymorphic types? Or something even more expressive? + +The classic case study motivating polymorphism in natural language +comes from coordination. (The locus classicus is Partee and Rooth +1983.) + + Ann left and Bill left. + Ann left and slept. + Ann and Bill left. + Ann read and reviewed the book. + +In English (likewise, many other languages), *and* can coordinate +clauses, verb phrases, determiner phrases, transitive verbs, and many +other phrase types. In a garden-variety simply-typed grammar, each +kind of conjunct has a different semantic type, and so we would need +an independent rule for each one. Yet there is a strong intuition +that the contribution of *and* remains constant across all of these +uses. Can we capture this using polymorphic types? + + Ann, Bill e + left, slept e -> t + read, reviewed e -> e -> t + +With these basic types, we want to say something like this: + + and:t->t->t = lambda l:t . lambda r:t . l r false + and = lambda 'a . lambda 'b . + lambda l:'a->'b . lambda r:'a->'b . + lambda x:'a . and:'b (l x) (r x) + +The idea is that the basic *and* conjoins expressions of type `t`, and +when *and* conjoins functional types, it builds a function that +distributes its argument across the two conjuncts and conjoins the two +results. So `Ann left and slept` will evaluate to `(\x.and(left +x)(slept x)) ann`. Following the terminology of Partee and Rooth, the +strategy of defining the coordination of expressions with complex +types in terms of the coordination of expressions with less complex +types is known as Generalized Coordination. + +But the definitions just given are not well-formed expressions in +System F. There are three problems. The first is that we have two +definitions of the same word. The intention is for one of the +definitions to be operative when the type of its arguments is type +`t`, but we have no way of conditioning evaluation on the *type* of an +argument. The second is that for the polymorphic definition, the term +*and* occurs inside of the definition. System F does not have +recursion. + +The third problem is more subtle. The defintion as given takes two +types as parameters: the type of the first argument expected by each +conjunct, and the type of the result of applying each conjunct to an +argument of that type. We would like to instantiate the recursive use +of *and* in the definition by using the result type. But fully +instantiating the definition as given requires type application to a +pair of types, not to just a single type. We want to somehow +guarantee that 'b will always itself be a complex type. + +So conjunction and disjunction provide a compelling motivation for +polymorphism in natural language, but we don't yet have the ability to +build the polymorphism into a formal system. + +And in fact, discussions of generalized coordination in the +linguistics literature are almost always left as a meta-level +generalizations over a basic simply-typed grammar. For instance, in +Hendriks' 1992:74 dissertation, generalized coordination is +implemented as a method for generating a suitable set of translation +rules, which are in turn expressed in a simply-typed grammar. + +Not incidentally, we're not aware of any programming language that +makes generalized coordination available, despite is naturalness and +ubiquity in natural language. That is, coordination in programming +languages is always at the sentential level. You might be able to +evaluate `(delete file1) and (delete file2)`, but never `delete (file1 +and file2)`. + +We'll return to thinking about generalized coordination as we get +deeper into types. There will be an analysis in term of continuations +that will be particularly satisfying. + + #Types in OCaml