X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=manipulating_trees_with_monads.mdwn;h=94a88e706b29582ef2f79c5b3a2806ce8a63f002;hp=52b8508c58e8a94885473647130cdcf4c8f26bfa;hb=1438c72f97b89eebb8524bc51f36918ba4b132b4;hpb=85a69e5c13b98614a203ce1ee483e93fb55c9b4c diff --git a/manipulating_trees_with_monads.mdwn b/manipulating_trees_with_monads.mdwn index 52b8508c..94a88e70 100644 --- a/manipulating_trees_with_monads.mdwn +++ b/manipulating_trees_with_monads.mdwn @@ -22,7 +22,7 @@ the utility of replacing one monad with other. First, we'll be needing a lot of trees for the remainder of the course. Here again is a type constructor for leaf-labeled, binary trees: - type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree) + type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree);; [How would you adjust the type constructor to allow for labels on the internal nodes?] @@ -81,7 +81,7 @@ in place of `double`: let square i = i * i;; tree_map square t1;; - - : int tree =ppp + - : int tree = Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121))) Note that what `tree_map` does is take some unchanging contextual @@ -95,8 +95,6 @@ a Reader monad---is to have the `tree_map` function return a (monadized) tree that is ready to accept any `int -> int` function and produce the updated tree. -\tree (. (. (f 2) (f 3)) (. (f 5) (. (f 7) (f 11)))) - \f . _____|____ | | @@ -248,6 +246,37 @@ increments the state. When we give that same operations to our `tree_monadize` function, it then wraps an `int tree` in a box, one that does the same state-incrementing for each of its leaves. +We can use the state monad to replace leaves with a number +corresponding to that leave's ordinal position. When we do so, we +reveal the order in which the monadic tree forces evaluation: + + # tree_monadize (fun a -> fun s -> (s+1, s+1)) t1 0;; + - : int tree * int = + (Node (Node (Leaf 1, Leaf 2), Node (Leaf 3, Node (Leaf 4, Leaf 5))), 5) + +The key thing to notice is that instead of copying `a` into the +monadic box, we throw away the `a` and put a copy of the state in +instead. + +Reversing the order requires reversing the order of the state_bind +operations. It's not obvious that this will type correctly, so think +it through: + + let rec tree_monadize_rev (f : 'a -> 'b state) (t : 'a tree) : 'b tree state = + match t with + | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b)) + | Node (l, r) -> state_bind (tree_monadize f r) (fun r' -> (* R first *) + state_bind (tree_monadize f l) (fun l'-> (* Then L *) + state_unit (Node (l', r'))));; + + # tree_monadize_rev (fun a -> fun s -> (s+1, s+1)) t1 0;; + - : int tree * int = + (Node (Node (Leaf 5, Leaf 4), Node (Leaf 3, Node (Leaf 2, Leaf 1))), 5) + +We will need below to depend on controlling the order in which nodes +are visited when we use the continuation monad to solve the +same-fringe problem. + One more revealing example before getting down to business: replacing `state` everywhere in `tree_monadize` with `list` gives us @@ -261,7 +290,7 @@ Unlike the previous cases, instead of turning a tree into a function from some input to a result, this transformer replaces each `int` with a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment. -[Why is the argument to tree_monadize `int -> int list list` instead +[Why is the argument to `tree_monadize` `int -> int list list` instead of `int -> int list`? Well, as usual, the List monad bind operation will erase the outer list box, so if we want to replace the leaves with lists, we have to nest the replacement lists inside a disposable @@ -289,7 +318,18 @@ So for example, we compute: # tree_monadize (fun a -> fun k -> a :: k a) t1 (fun t -> []);; - : int list = [2; 3; 5; 7; 11] -We have found a way of collapsing a tree into a list of its leaves. Can you trace how this is working? Think first about what the operation `fun a -> fun k -> a :: k a` does when you apply it to a plain `int`, and the continuation `fun _ -> []`. Then given what we've said about `tree_monadize`, what should we expect `tree_monadize (fun a -> fun k -> a :: k a` to do? +We have found a way of collapsing a tree into a list of its +leaves. Can you trace how this is working? Think first about what the +operation `fun a -> fun k -> a :: k a` does when you apply it to a +plain `int`, and the continuation `fun _ -> []`. Then given what we've +said about `tree_monadize`, what should we expect `tree_monadize (fun +a -> fun k -> a :: k a` to do? + +In a moment, we'll return to the same-fringe problem. Since the +simple but inefficient way to solve it is to map each tree to a list +of its leaves, this transformation is on the path to a more efficient +solution. We'll just have to figure out how to postpone computing the +tail of the list until its needed... The Continuation monad is amazingly flexible; we can use it to simulate some of the computations performed above. To see how, first @@ -327,6 +367,224 @@ generalizing the type of the Continuation monad to If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml). +Using continuations to solve the same fringe problem +---------------------------------------------------- + +We've seen two solutions to the same fringe problem so far. +The problem, recall, is to take two trees and decide whether they have +the same leaves in the same order. + +
+ ta            tb          tc
+ .             .           .
+_|__          _|__        _|__
+|  |          |  |        |  |
+1  .          .  3        1  .
+  _|__       _|__           _|__
+  |  |       |  |           |  |
+  2  3       1  2           3  2
+
+let ta = Node (Leaf 1, Node (Leaf 2, Leaf 3));;
+let tb = Node (Node (Leaf 1, Leaf 2), Leaf 3);;
+let tc = Node (Leaf 1, Node (Leaf 3, Leaf 2));;
+
+ +So `ta` and `tb` are different trees that have the same fringe, but +`ta` and `tc` are not. + +The simplest solution is to map each tree to a list of its leaves, +then compare the lists. But because we will have computed the entire +fringe before starting the comparison, if the fringes differ in an +early position, we've wasted our time examining the rest of the trees. + +The second solution was to use tree zippers and mutable state to +simulate coroutines (see [[coroutines and aborts]]). In that +solution, we pulled the zipper on the first tree until we found the +next leaf, then stored the zipper structure in the mutable variable +while we turned our attention to the other tree. Because we stopped +as soon as we find the first mismatched leaf, this solution does not +have the flaw just mentioned of the solution that maps both trees to a +list of leaves before beginning comparison. + +Since zippers are just continuations reified, we expect that the +solution in terms of zippers can be reworked using continuations, and +this is indeed the case. Before we can arrive at a solution, however, +we must define a data structure called a stream: + + type 'a stream = End | Next of 'a * (unit -> 'a stream);; + +A stream is like a list in that it contains a series of objects (all +of the same type, here, type `'a`). The first object in the stream +corresponds to the head of a list, which we pair with a stream +representing the rest of a the list. There is a special stream called +`End` that represents a stream that contains no (more) elements, +analogous to the empty list `[]`. + +Actually, we pair each element not with a stream, but with a thunked +stream, that is, a function from the unit type to streams. The idea +is that the next element in the stream is not computed until we forced +the thunk by applying it to the unit: + +
+# let rec make_int_stream i = Next (i, fun () -> make_int_stream (i + 1));;
+val make_int_stream : int -> int stream = 
+# let int_stream = make_int_stream 1;;
+val int_stream : int stream = Next (1, )         (* First element: 1 *)
+# match int_stream with Next (i, rest) -> rest;;      
+- : unit -> int stream =                         (* Rest: a thunk *)
+
+(* Force the thunk to compute the second element *)
+# (match int_stream with Next (i, rest) -> rest) ();;
+- : int stream = Next (2, )      
+
+ +You can think of `int_stream` as a functional object that provides +access to an infinite sequence of integers, one at a time. It's as if +we had written `[1;2;...]` where `...` meant "continue indefinitely". + +So, with streams in hand, we need only rewrite our continuation tree +monadizer so that instead of mapping trees to lists, it maps them to +streams. Instead of + + # tree_monadize (fun a k -> a :: k a) t1 (fun t -> []);; + - : int list = [2; 3; 5; 7; 11] + +as above, we have + + # tree_monadize (fun i k -> Next (i, fun () -> k ())) t1 (fun _ -> End);; + - : int stream = Next (2, ) + +We can see the first element in the stream, the first leaf (namely, +2), but in order to see the next, we'll have to force a thunk. + +Then to complete the same-fringe function, we simply convert both +trees into leaf-streams, then compare the streams element by element. +The code is enitrely routine, but for the sake of completeness, here it is: + +
+let rec compare_streams stream1 stream2 =
+    match stream1, stream2 with 
+    | End, End -> true (* Done!  Fringes match. *)
+    | Next (next1, rest1), Next (next2, rest2) when next1 = next2 -> compare_streams (rest1 ()) (rest2 ())
+    | _ -> false;;
+
+let same_fringe t1 t2 =
+  let stream1 = tree_monadize (fun i k -> Next (i, fun () -> k ())) t1 (fun _ -> End) in 
+  let stream2 = tree_monadize (fun i k -> Next (i, fun () -> k ())) t2 (fun _ -> End) in 
+  compare_streams stream1 stream2;;
+
+ +Notice the forcing of the thunks in the recursive call to +`compare_streams`. So indeed: + +
+# same_fringe ta tb;;
+- : bool = true
+# same_fringe ta tc;;
+- : bool = false
+
+ +Now, this implementation is a bit silly, since in order to convert the +trees to leaf streams, our tree_monadizer function has to visit every +node in the tree. But if we needed to compare each tree to a large +set of other trees, we could arrange to monadize each tree only once, +and then run compare_streams on the monadized trees. + +By the way, what if you have reason to believe that the fringes of +your trees are more likely to differ near the right edge than the left +edge? If we reverse evaluation order in the tree_monadizer function, +as shown above when we replaced leaves with their ordinal position, +then the resulting streams would produce leaves from the right to the +left. + +The idea of using continuations to characterize natural language meaning +------------------------------------------------------------------------ + +We might a philosopher or a linguist be interested in continuations, +especially if efficiency of computation is usually not an issue? +Well, the application of continuations to the same-fringe problem +shows that continuations can manage order of evaluation in a +well-controlled manner. In a series of papers, one of us (Barker) and +Ken Shan have argued that a number of phenomena in natural langauge +semantics are sensitive to the order of evaluation. We can't +reproduce all of the intricate arguments here, but we can give a sense +of how the analyses use continuations to achieve an analysis of +natural language meaning. + +**Quantification and default quantifier scope construal**. + +We saw in the copy-string example and in the same-fringe example that +local properties of a tree (whether a character is `S` or not, which +integer occurs at some leaf position) can control global properties of +the computation (whether the preceeding string is copied or not, +whether the computation halts or proceeds). Local control of +surrounding context is a reasonable description of in-situ +quantification. + + (1) John saw everyone yesterday. + +This sentence means (roughly) + + &Forall; x . yesterday(saw x) john + +That is, the quantifier *everyone* contributes a variable in the +direct object position, and a universal quantifier that takes scope +over the whole sentence. If we have a lexical meaning function like +the following: + +
+let lex (s:string) k = match s with 
+  | "everyone" -> Node (Leaf "forall x", k "x")
+  | "someone" -> Node (Leaf "exists y", k "y")
+  | _ -> k s;;
+
+let sentence1 = Node (Leaf "John", 
+                      Node (Node (Leaf "saw", 
+                                  Leaf "everyone"), 
+                            Leaf "yesterday"));;
+
+ +Then we can crudely approximate quantification as follows: + +
+# tree_monadize lex sentence1 (fun x -> x);;
+- : string tree =
+Node
+ (Leaf "forall x",
+  Node (Leaf "John", Node (Node (Leaf "saw", Leaf "x"), Leaf "yesterday")))
+
+ +In order to see the effects of evaluation order, +observe what happens when we combine two quantifiers in the same +sentence: + +
+# let sentence2 = Node (Leaf "everyone", Node (Leaf "saw", Leaf "someone"));;
+# tree_monadize lex sentence2 (fun x -> x);;
+- : string tree =
+Node
+ (Leaf "forall x",
+  Node (Leaf "exists y", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
+
+ +The universal takes scope over the existential. If, however, we +replace the usual tree_monadizer with tree_monadizer_rev, we get +inverse scope: + +
+# tree_monadize_rev lex sentence2 (fun x -> x);;
+- : string tree =
+Node
+ (Leaf "exists y",
+  Node (Leaf "forall x", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
+
+ +There are many crucially important details about quantification that +are being simplified here, and the continuation treatment here is not +scalable for a number of reasons. Nevertheless, it will serve to give +an idea of how continuations can provide insight into the behavior of +quantifiers. + The Binary Tree monad --------------------- @@ -352,8 +610,6 @@ induction on the structure of the first argument that the tree resulting from `bind u f` is a tree with the same strucure as `u`, except that each leaf `a` has been replaced with `f a`: -\tree (. (f a1) (. (. (. (f a2) (f a3)) (f a4)) (f a5))) - . . __|__ __|__ | | | | @@ -383,9 +639,6 @@ As for the associative law, we'll give an example that will show how an inductive proof would proceed. Let `f a = Node (Leaf a, Leaf a)`. Then -\tree (. (. (. (. (a1) (a2))))) -\tree (. (. (. (. (a1) (a1)) (. (a1) (a1))))) - . ____|____ . . | | @@ -439,113 +692,5 @@ What's this have to do with the `tree_monadize` functions we defined earlier? ... and so on for different monads? -The answer is that each of those `tree_monadize` functions is adding a Tree monad *layer* to a pre-existing Reader (and so on) monad. So far, we've defined monads as single-layered things. Though in the Groenendijk, Stokhoff, and Veltmann homework, we had to figure out how to combine Reader, State, and Set monads in an ad-hoc way. In practice, one often wants to combine the abilities of several monads. Corresponding to each monad like Reader, there's a corresponding ReaderT **monad transformer**. That takes an existing monad M and adds a Reader monad layer to it. The way these are defined parallels the way the single-layer versions are defined. For example, here's the Reader monad: - - (* monadic operations for the Reader monad *) - - type 'a reader = - env -> 'a;; - let unit (a : 'a) : 'a reader = - fun e -> a;; - let bind (u: 'a reader) (f : 'a -> 'b reader) : 'b reader = - fun e -> (fun v -> f v e) (u e);; - -We've just beta-expanded the familiar `f (u e) e` into `(fun v -> f v e) (u e)`, in order to factor out the parts where any Reader monad is being supplied as an argument to another function. Then if we want instead to add a Reader layer to some arbitrary other monad M, with its own M.unit and M.bind, here's how we do it: - - (* monadic operations for the ReaderT monadic transformer *) - - (* We're not giving valid OCaml code, but rather something - * that's conceptually easier to digest. - * How you really need to write this in OCaml is more circuitous... - * see http://lambda.jimpryor.net/code/tree_monadize.ml for some details. *) - - type ('a, M) readerT = - env -> 'a M;; - (* this is just an 'a M reader; but don't rely on that pattern to generalize *) - - let unit (a : 'a) : ('a, M) readerT = - fun e -> M.unit a;; - - let bind (u : ('a, M) readerT) (f : 'a -> ('b, M) readerT) : ('b, M) readerT = - fun e -> M.bind (u e) (fun v -> f v e);; - -Notice the key differences: where before we just returned `a`, now we instead return `M.unit a`. Where before we just supplied value `u e` of type `'a reader` as an argument to a function, now we instead `M.bind` the `'a reader` to that function. Notice also the differences in the types. - -What is the relation between Reader and ReaderT? Well, suppose you started with the Identity monad: - - type 'a identity = 'a;; - let unit (a : 'a) : 'a = a;; - let bind (u : 'a) (f : 'a -> 'b) : 'b = f u;; - -and you used the ReaderT transformer to add a Reader monad layer to the Identity monad. What do you suppose you would get? - -The relations between the State monad and the StateT monadic transformer are parallel: - - (* monadic operations for the State monad *) - - type 'a state = - store -> ('a * store);; - - let unit (a : 'a) : 'a state = - fun s -> (a, s);; - - let bind (u : 'a state) (f : 'a -> 'b state) : 'b state = - fun s -> (fun (a, s') -> f a s') (u s);; - -We've used `(fun (a, s') -> f a s') (u s)` instead of the more familiar `let (a, s') = u s in f a s'` in order to factor out the part where a value of type `'a state` is supplied as an argument to a function. Now StateT will be: - - (* monadic operations for the StateT monadic transformer *) - - type ('a, M) stateT = - store -> ('a * store) M;; - (* notice this is not an 'a M state *) - - let unit (a : 'a) : ('a, M) stateT = - fun s -> M.unit (a, s);; - - let bind (u : ('a, M) stateT) (f : 'a -> ('b, M) stateT) : ('b, M) stateT = - fun s -> M.bind (u s) (fun (a, s') -> f a s');; - -Do you see the pattern? Where ordinarily we'd return an `'a` value, now we instead return an `'a M` value. Where ordinarily we'd supply a `'a state` value as an argument to a function, now we instead `M.bind` it to that function. - -Okay, now let's do the same thing for our Tree monad. - - (* monadic operations for the Tree monad *) - - type 'a tree = - Leaf of 'a | Node of ('a tree) * ('a tree);; - - let unit (a: 'a) : 'a tree = - Leaf a;; - - let rec bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree = - match u with - | Leaf a -> f a;; - | Node (l, r) -> (fun l' r' -> Node (l', r')) (bind l f) (bind r f);; - - (* monadic operations for the TreeT monadic transformer *) - (* NOTE THIS IS NOT YET WORKING --- STILL REFINING *) - - type ('a, M) treeT = - 'a tree M;; - - let unit (a: 'a) : ('a, M) tree = - M.unit (Leaf a);; - - let rec bind (u : ('a, M) tree) (f : 'a -> ('b, M) tree) : ('b, M) tree = - match u with - | Leaf a -> M.bind (f a) (fun b -> M.unit (Leaf b)) - | Node (l, r) -> M.bind (bind l f) (fun l' -> - M.bind (bind r f) (fun r' -> - M.unit (Node (l', r'));; - -Compare this definition of `bind` for the TreeT monadic transformer to our earlier definition of `tree_monadize`, specialized for the Reader monad: - - let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader = - match t with - | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b)) - | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' -> - reader_bind (tree_monadize f r) (fun r' -> - reader_unit (Node (l', r'))));; - +The answer is that each of those `tree_monadize` functions is adding a Tree monad *layer* to a pre-existing Reader (and so on) monad. We discuss that further here: [[Monad Transformers]].