X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=manipulating_trees_with_monads.mdwn;h=315cb68a9e58726a8d8c6cb65aeca027794d82be;hp=c92065c41bec611a3625d6b58ac2671408646b37;hb=bf8d964cc93f6b0b44a432bca8c94b1374c05e1f;hpb=f6950034eb1c228badf3364375595032a56e3afb diff --git a/manipulating_trees_with_monads.mdwn b/manipulating_trees_with_monads.mdwn index c92065c4..315cb68a 100644 --- a/manipulating_trees_with_monads.mdwn +++ b/manipulating_trees_with_monads.mdwn @@ -13,7 +13,7 @@ From an engineering standpoint, we'll build a tree transformer that deals in monads. We can modify the behavior of the system by swapping one monad for another. We've already seen how adding a monad can add a layer of funtionality without disturbing the underlying system, for -instance, in the way that the reader monad allowed us to add a layer +instance, in the way that the Reader monad allowed us to add a layer of intensionality to an extensional grammar, but we have not yet seen the utility of replacing one monad with other. @@ -81,14 +81,14 @@ supplying the appropriate `int -> int` operation in place of `double`: - : int tree =ppp Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121))) -Note that what `tree_map` does is take some global, contextual +Note that what `tree_map` does is take some unchanging contextual information---what to do to each leaf---and supplies that information to each subpart of the computation. In other words, `tree_map` has the -behavior of a reader monad. Let's make that explicit. +behavior of a Reader monad. Let's make that explicit. In general, we're on a journey of making our `tree_map` function more and more flexible. So the next step---combining the tree transformer with -a reader monad---is to have the `tree_map` function return a (monadized) +a Reader monad---is to have the `tree_map` function return a (monadized) tree that is ready to accept any `int -> int` function and produce the updated tree. @@ -113,9 +113,7 @@ tree` in which each leaf `i` has been replaced with `f i`. With previous readers, we always knew which kind of environment to expect: either an assignment function (the original calculator simulation), a world (the intensionality monad), an integer (the -Jacobson-inspired link monad), etc. In the present case, it will be -enough to expect that our "environment" will be some function of type -`int -> int`. +Jacobson-inspired link monad), etc. In the present case, we expect that our "environment" will be some function of type `int -> int`. "Looking up" some `int` in the environment will return us the `int` that comes out the other side of that function. type 'a reader = (int -> int) -> 'a;; (* mnemonic: e for environment *) let reader_unit (a : 'a) : 'a reader = fun _ -> a;; @@ -135,16 +133,44 @@ But we can do this: let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader = match t with - | Leaf i -> reader_bind (f i) (fun i' -> reader_unit (Leaf i')) - | Node (l, r) -> reader_bind (tree_monadize f l) (fun x -> - reader_bind (tree_monadize f r) (fun y -> - reader_unit (Node (x, y))));; + | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b)) + | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' -> + reader_bind (tree_monadize f r) (fun r' -> + reader_unit (Node (l', r'))));; This function says: give me a function `f` that knows how to turn -something of type `'a` into an `'b reader`, and I'll show you how to -turn an `'a tree` into an `'b tree reader`. In more fanciful terms, -the `tree_monadize` function builds plumbing that connects all of the -leaves of a tree into one connected monadic network; it threads the +something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to---and I'll show you how to +turn an `'a tree` into an `'b tree reader`. That is, if you show me how to do this: + + ------------ + 1 ---> | 1 | + ------------ + +then I'll give you back the ability to do this: + + ____________ + . | . | + __|___ ---> | __|___ | + | | | | | | + 1 2 | 1 2 | + ------------ + +And how will that boxed tree behave? Whatever actions you perform on it will be transmitted down to corresponding operations on its leaves. For instance, our `int reader` expects an `int -> int` environment. If supplying environment `e` to our `int reader` doubles the contained `int`: + + ------------ + 1 ---> | 1 | applied to e ~~> 2 + ------------ + +Then we can expect that supplying it to our `int tree reader` will double all the leaves: + + ____________ + . | . | . + __|___ ---> | __|___ | applied to e ~~> __|___ + | | | | | | | | + 1 2 | 1 2 | 2 4 + ------------ + +In more fanciful terms, the `tree_monadize` function builds plumbing that connects all of the leaves of a tree into one connected monadic network; it threads the `'b reader` monad through the original tree's leaves. # tree_monadize int_readerize t1 double;; @@ -161,10 +187,10 @@ result: - : int tree = Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121))) -Now that we have a tree transformer that accepts a reader monad as a +Now that we have a tree transformer that accepts a *reader* monad as a parameter, we can see what it would take to swap in a different monad. -For instance, we can use a state monad to count the number of leaves in +For instance, we can use a State monad to count the number of leaves in the tree. type 'a state = int -> 'a * int;; @@ -177,14 +203,14 @@ modification whatsoever, except for replacing the (parametric) type let rec tree_monadize (f : 'a -> 'b state) (t : 'a tree) : 'b tree state = match t with - | Leaf i -> state_bind (f i) (fun i' -> state_unit (Leaf i')) - | Node (l, r) -> state_bind (tree_monadize f l) (fun x -> - state_bind (tree_monadize f r) (fun y -> - state_unit (Node (x, y))));; + | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b)) + | Node (l, r) -> state_bind (tree_monadize f l) (fun l' -> + state_bind (tree_monadize f r) (fun r' -> + state_unit (Node (l', r'))));; Then we can count the number of leaves in the tree: - # tree_monadize (fun a s -> (a, s+1)) t1 0;; + # tree_monadize (fun a -> fun s -> (a, s+1)) t1 0;; - : int tree * int = (Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 5) @@ -199,6 +225,7 @@ Then we can count the number of leaves in the tree: | | 7 11 +Why does this work? Because the operation `fun a -> fun s -> (a, s+1)` takes an `int` and wraps it in an `int state` monadic box that increments the state. When we give that same operations to our `tree_monadize` function, it then wraps an `int tree` in a box, one that does the same state-incrementing for each of its leaves. One more revealing example before getting down to business: replacing `state` everywhere in `tree_monadize` with `list` gives us @@ -211,7 +238,8 @@ One more revealing example before getting down to business: replacing Unlike the previous cases, instead of turning a tree into a function from some input to a result, this transformer replaces each `int` with -a list of `int`'s. +a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment. +