X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=hints%2Fassignment_7_hint_6.mdwn;h=e513284bd51d31b5eab302b3ab669e44957bf12f;hp=0859706b47b47beb5360ec6f9acdef0799aa6130;hb=9efbe94f74c2ea61522fcdb3e3d012fde6034fcd;hpb=85784b8965db9b0daf0c03f043bc68bd9b41a18c diff --git a/hints/assignment_7_hint_6.mdwn b/hints/assignment_7_hint_6.mdwn index 0859706b..e513284b 100644 --- a/hints/assignment_7_hint_6.mdwn +++ b/hints/assignment_7_hint_6.mdwn @@ -5,40 +5,58 @@ where `i` *subsists* in s[φ] if there are any `i'` that *extend* `i` in s[φ]. ------- wrong.... + Here's how to do that in our framework. Instead of asking whether a possibility subsists in an updated set of possibilities, we ask what is returned by extensions of a `dpm` when they're given a particular (r, h) as input. - In our framework, we just have to convert the operation >>= \[[ψ]] into another operation >>= \[[ψ]] >>= neg, where `neg` flips the truth-value of all the `bool dpm`s it operates on: + (* filter out which bool dpms in a set are true when receiving (r, h) as input *) + let truths set (r, h) = + let test one_dpm = + let (truth_value, _, _) = one_dpm (r, h) + in truth_value + in List.filter test set;; - type clause_op = bool dpm -> bool dpm set;; - - let negate_op (phi : clause_op) : clause_op = - let neg : clause_op = fun one_dpm -> - unit_set (fun (r, h) -> - let (truth_value, r', h') = one_dpm (r, h) - in (not truth_value, r', h')) - in fun one_dpm -> bind_set (phi one_dpm) neg;; - - - let negate_op (phi : clause_op) : clause_op = + let negate_op (phi : clause) : clause = fun one_dpm -> - if blah - then unit_set one_dpm - else empty_set ------- + let new_dpm = fun (r, h) -> + (* if one_dpm isn't already false at (r, h), + we want to check its behavior when updated with phi + bind_set (unit_set one_dpm) phi === phi one_dpm; do you remember why? *) + let (truth_value, r', h') = one_dpm (r, h) + in let truth_value' = truth_value && (truths (phi one_dpm) (r, h) = []) + (* new_dpm must return a (bool, r, h) *) + in (truth_value', r', h') + in unit_set new_dpm;; + + **Thanks to Simon Charlow** for catching a subtle error in previous versions of this function. Fixed 1 Dec. * Representing \[[and φ ψ]] is simple: - let and_op (phi : clause_op) (psi : clause_op) : clause_op = + let and_op (phi : clause) (psi : clause) : clause = fun one_dpm -> bind_set (phi one_dpm) psi;; + (* now u >>= and_op phi psi === u >>= phi >>= psi; do you remember why? *) + + +* Here are `or` and `if`: -* We define the other connectives in terms of `not` and `and`: + (These probably still manifest the bug Simon spotted.) - let or_op (phi : clause_op) (psi : clause_op) = - negate_op (and_op (negate_op phi) (negate_op psi)) + let or_op (phi : clause) (psi : clause) = + fun one_dpm -> unit_set ( + fun (r, h) -> + let truth_value' = ( + truths (phi one_dpm) (r, h) <> [] || + truths (bind_set (negate_op phi one_dpm) psi) (r, h) <> [] + ) in (truth_value', r, h)) + + let if_op (phi : clause) (psi : clause) : clause = + fun one_dpm -> unit_set ( + fun (r, h) -> + let truth_value' = List.for_all (fun one_dpm -> + let (truth_value, _, _) = one_dpm (r, h) + in truth_value = false || truths (psi one_dpm) (r, h) <> [] + ) (phi one_dpm) + in (truth_value', r, h));; - let if_op (phi : clause_op) (psi : clause_op) = - negate_op (and_op phi (negate_op psi));; * Now let's test everything we've developed: @@ -60,24 +78,29 @@ let bind_set (u : 'a set) (f : 'a -> 'b set) : 'b set = List.concat (List.map f u);; - type clause_op = bool dpm -> bool dpm set;; + type clause = bool dpm -> bool dpm set;; + +* More: + (* this generalizes the getx function from hint 4 *) let get (var : char) : entity dpm = fun (r, h) -> let obj = List.nth h (r var) in (obj, r, h);; - let lift_predicate (f : entity -> bool) : entity dpm -> clause_op = + (* this generalizes the proposal for \[[Q]] from hint 4 *) + let lift_predicate (f : entity -> bool) : entity dpm -> clause = fun entity_dpm -> - let eliminator = fun (truth_value : bool) -> + let eliminator = fun truth_value -> if truth_value = false then unit_dpm false else bind_dpm entity_dpm (fun e -> unit_dpm (f e)) in fun one_dpm -> unit_set (bind_dpm one_dpm eliminator);; - let lift_predicate2 (f : entity -> entity -> bool) : entity dpm -> entity dpm -> clause_op = + (* doing the same thing for binary predicates *) + let lift_predicate2 (f : entity -> entity -> bool) : entity dpm -> entity dpm -> clause = fun entity1_dpm entity2_dpm -> - let eliminator = fun (truth_value : bool) -> + let eliminator = fun truth_value -> if truth_value = false then unit_dpm false else bind_dpm entity1_dpm (fun e1 -> bind_dpm entity2_dpm (fun e2 -> unit_dpm (f e1 e2))) @@ -92,25 +115,31 @@ if var = var_to_bind then new_index else r var in (truth_value, r', h') - let exists var : clause_op = fun one_dpm -> - List.map (fun d -> bind_dpm one_dpm (new_peg_and_assign var d)) domain + (* from hint 5 *) + let exists var : clause = + let extend one_dpm (d : entity) = + bind_dpm one_dpm (new_peg_and_assign var d) + in fun one_dpm -> List.map (fun d -> extend one_dpm d) domain - (* negate_op, and_op, or_op, and if_op as above *) + (* include negate_op, and_op, or_op, and if_op as above *) +* More: + + (* some handy utilities *) let (>>=) = bind_set;; + let getx = get 'x';; + let gety = get 'y';; let initial_set = [fun (r,h) -> (true,r,h)];; - let initial_r = fun var -> failwith ("no value for " ^ (Char.escaped var));; let run dpm_set = - let bool_set = List.map (fun one_dpm -> let (value, r, h) = one_dpm (initial_r, []) in value) dpm_set - in List.exists (fun truth_value -> truth_value) bool_set;; - - let male obj = obj = Bob || obj = Ted;; - let wife_of x y = (x,y) = (Bob, Carol) || (x,y) = (Ted, Alice);; - let kisses x y = (x,y) = (Bob, Carol) || (x,y) = (Ted, Alice);; - let misses x y = (x,y) = (Bob, Carol) || (x,y) = (Ted, Carol);; - let getx = get 'x';; - let gety = get 'y';; + (* do any of the dpms in the set return (true, _, _) when given (initial_r, []) as input? *) + List.filter (fun one_dpm -> let (truth_value, _, _) = one_dpm (initial_r, []) in truth_value) dpm_set <> [];; + + (* let's define some predicates *) + let male e = (e = Bob || e = Ted);; + let wife_of e1 e2 = ((e1,e2) = (Bob, Carol) || (e1,e2) = (Ted, Alice));; + let kisses e1 e2 = ((e1,e2) = (Bob, Carol) || (e1,e2) = (Ted, Alice));; + let misses e1 e2 = ((e1,e2) = (Bob, Carol) || (e1,e2) = (Ted, Carol));; (* "a man x has a wife y" *) let antecedent = fun one_dpm -> exists 'x' one_dpm >>= lift_predicate male getx >>= exists 'y' >>= lift_predicate2 wife_of getx gety;;