X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=hints%2Fassignment_7_hint_4.mdwn;h=cef57737ffedccf80b499a2d5f2bfb3f09364ff2;hp=253ee96f1483fbb694de1dd34c3f60f40c66af54;hb=85784b8965db9b0daf0c03f043bc68bd9b41a18c;hpb=f212354152a53c6a3ab018c7874570c600f463b9 diff --git a/hints/assignment_7_hint_4.mdwn b/hints/assignment_7_hint_4.mdwn index 253ee96f..cef57737 100644 --- a/hints/assignment_7_hint_4.mdwn +++ b/hints/assignment_7_hint_4.mdwn @@ -1,9 +1,9 @@ * At the top of p. 13 (this is in between defs 2.8 and 2.9), GS&V give two examples, one for \[[∃xPx]] and the other for \[[Qx]]. In fact it will be most natural to break \[[∃xPx]] into two pieces, \[[∃x]] and \[[Px]]. But first we need to get clear on expressions like \[[Qx]]. -* GS&V say that the effect of updating an information state `s` with the meaning of "Qx" should be to eliminate possibilities in which the entity associated with the peg associated with the variable `x` does not have the property Q. In other words, if we let `q` be the function from entities to `bool`s that gives the extension of "Q", then `s` updated with \[[Qx]] should be `s` filtered by the function `fun (r, h) -> let obj = List.nth h (r 'x') in q obj`. When `... q obj` evaluates to `true`, that `(r, h)` pair is retained, else it is discarded. +* GS&V say that the effect of updating an information state `s` with the meaning of "Qx" should be to eliminate possibilities in which the entity associated with the peg associated with the variable `x` does not have the property Q. In other words, if we let `q` be the function from entities to `bool`s that gives the extension of Q, then `s` updated with \[[Qx]] should be `s` filtered by the function `fun (r, h) -> let obj = List.nth h (r 'x') in q obj`. When `... q obj` evaluates to `true`, that `(r, h)` pair is retained, else it is discarded. - OK, we face two questions then. First, how do we carry this over to our present framework, where we're working with sets of `dpm`s instead of sets of discourse possibilities? And second, how do we decompose the behavior here ascribed to \[[Qx]] into some meaning for "Q" and a different meaning for "x"? + OK, we face two questions then. First, how do we carry this over to our present framework, where we're working with sets of `dpm`s instead of sets of discourse possibilities? And second, how do we decompose the behavior here attributed to \[[Qx]] into some meaning for "Q" and a different meaning for "x"? * Answering the first question: we assume we've got some `bool dpm set` to start with. I won't call this `s` because that's what GS&V use for sets of discourse possibilities, and we don't want to confuse discourse possibilities with `dpm`s. Instead I'll call it `u`. Now what we want to do with `u` is to map each `dpm` it gives us to one that results in `(true, r, h)` only when the entity that `r` and `h` associate with variable `x` has the property Q. As above, I'll assume Q's extension is given by a function `q` from entities to `bool`s. @@ -28,7 +28,7 @@ u >>= \[[Qx]] -* Now our second question: how do we decompose the behavior here ascribed to \[[Qx]] into some meaning for "Q" and a different meaning for "x"? +* Now our second question: how do we decompose the behavior here attributed to \[[Qx]] into some meaning for "Q" and a different meaning for "x"? Well, we already know that \[[x]] will be a kind of computation that takes an assignment function `r` and store `h` as input. It will look up the entity that those two together associate with the variable `x`. So we can treat \[[x]] as an `entity dpm`. We don't worry here about sets of `dpm`s; we'll leave that to our predicates to interface with. We'll just make \[[x]] be a single `entity dpm`. So what we want is: @@ -138,7 +138,7 @@ Can you persuade yourself that these are equivalent?) -* Reviewing: now we've determined how to define \[[Q]] and \[[x]] such that \[[Qx]] can be the result of applying the function \[[Q]] to the `entity dpm` \[[x]]. And \[[Qx]] in turn is now a function that takes a `bool dpm` as input and returns a `bool dpm set` as output. We compose this with a `bool dpm set` we already have on hand: +* Reviewing: now we've determined how to define \[[Q]] and \[[x]] such that \[[Qx]] can be the result of applying the function \[[Q]] to the `entity dpm` \[[x]]. And \[[Qx]] in turn is now a function that takes a `bool dpm` as input and returns a `bool dpm set` as output. We monadically bind this operaration to whatever `bool dpm set` we already have on hand: bind_set u \[[Qx]]