X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=from_lists_to_continuations.mdwn;h=3dc6dde76734c777f1258799d4d581bc87a8b299;hp=0b3f4643cbcb890edd85565be664670dc38de7d6;hb=56b4312b90432a6655b94558ebfb5dca78209ac3;hpb=cd3b0839319cccf085142a33c82c32df1bcf69d4 diff --git a/from_lists_to_continuations.mdwn b/from_lists_to_continuations.mdwn index 0b3f4643..3dc6dde7 100644 --- a/from_lists_to_continuations.mdwn +++ b/from_lists_to_continuations.mdwn @@ -1,4 +1,3 @@ - Refunctionalizing zippers: from lists to continuations ------------------------------------------------------ @@ -29,7 +28,7 @@ In linguistic terms, this is a kind of anaphora resolution, where `'S'` is functioning like an anaphoric element, and the preceding string portion is the antecedent. -This deceptively simple task gives rise to some mind-bending complexity. +This simple task gives rise to considerable complexity. Note that it matters which 'S' you target first (the position of the * indicates the targeted 'S'): @@ -67,7 +66,7 @@ versus ~~> ... -Aparently, this task, as simple as it is, is a form of computation, +Apparently, this task, as simple as it is, is a form of computation, and the order in which the `'S'`s get evaluated can lead to divergent behavior. @@ -78,16 +77,17 @@ This is a task well-suited to using a zipper. We'll define a function `tz` (for task with zippers), which accomplishes the task by mapping a char list zipper to a char list. We'll call the two parts of the zipper `unzipped` and `zipped`; we start with a fully zipped list, and -move elements to the zipped part by pulling the zipped down until the -entire list has been unzipped (and so the zipped half of the zipper is empty). +move elements from the zipped part to the unzipped part by pulling the +zipper down until the entire list has been unzipped (at which point +the zipped half of the zipper will be empty).
 type 'a list_zipper = ('a list) * ('a list);;
 
 let rec tz (z:char list_zipper) = 
-    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
-               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
-               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
+  match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
+             | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
+             | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
 
 # tz ([], ['a'; 'b'; 'S'; 'd']);;
 - : char list = ['a'; 'b'; 'a'; 'b'; 'd']
@@ -102,7 +102,7 @@ Task completed.
 One way to see exactly what is going on is to watch the zipper in
 action by tracing the execution of `tz`.  By using the `#trace`
 directive in the Ocaml interpreter, the system will print out the
-arguments to `tz` each time it is (recurcively) called.  Note that the
+arguments to `tz` each time it is (recursively) called.  Note that the
 lines with left-facing arrows (`<--`) show (recursive) calls to `tz`,
 giving the value of its argument (a zipper), and the lines with
 right-facing arrows (`-->`) show the output of each recursive call, a
@@ -129,11 +129,11 @@ The nice thing about computations involving lists is that it's so easy
 to visualize them as a data structure.  Eventually, we want to get to
 a place where we can talk about more abstract computations.  In order
 to get there, we'll first do the exact same thing we just did with
-concrete zipper using procedures.  
+concrete zippers using procedures instead.
 
 Think of a list as a procedural recipe: `['a'; 'b'; 'S'; 'd']` 
 is the result of the computation `a::(b::(S::(d::[])))` (or, in our old
-style, `makelist a (makelist b (makelist S (makelist c empty)))`).
+style, `makelist 'a' (makelist 'b' (makelist 'S' (makelist 'c' empty)))`).
 The recipe for constructing the list goes like this:
 
 
@@ -148,25 +148,25 @@ The recipe for constructing the list goes like this:
 What is the type of each of these steps?  Well, it will be a function
 from the result of the previous step (a list) to a new list: it will
 be a function of type `char list -> char list`.  We'll call each step
-a **continuation** of the recipe.  So in this context, a continuation
-is a function of type `char list -> char list`.  For instance, the
-continuation corresponding to the portion of the recipe below the
-horizontal line is the function `fun (tail:char list) -> a::(b::tail)`.
-
-This means that we can now represent the unzipped part of our
-zipper--the part we've already unzipped--as a continuation: a function
-describing how to finish building the list.  We'll write a new
-function, `tc` (for task with continuations), that will take an input
-list (not a zipper!) and a continuation and return a processed list.
-The structure and the behavior will follow that of `tz` above, with
-some small but interesting differences.  We've included the orginal
-`tz` to facilitate detailed comparison:
+(or group of steps) a **continuation** of the recipe.  So in this
+context, a continuation is a function of type `char list -> char
+list`.  For instance, the continuation corresponding to the portion of
+the recipe below the horizontal line is the function `fun (tail:char
+list) -> a::(b::tail)`.
+
+This means that we can now represent the unzipped part of our zipper
+as a continuation: a function describing how to finish building the
+list.  We'll write a new function, `tc` (for task with continuations),
+that will take an input list (not a zipper!) and a continuation and
+return a processed list.  The structure and the behavior will follow
+that of `tz` above, with some small but interesting differences.
+We've included the orginal `tz` to facilitate detailed comparison:
 
 
 let rec tz (z:char list_zipper) = 
-    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
-               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
-               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
+  match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
+             | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
+             | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
 
 let rec tc (l: char list) (c: (char list) -> (char list)) =
   match l with [] -> List.rev (c [])
@@ -174,13 +174,13 @@ let rec tc (l: char list) (c: (char list) -> (char list)) =
              | target::zipped -> tc zipped (fun x -> target::(c x));;
 
 # tc ['a'; 'b'; 'S'; 'd'] (fun x -> x);;
-- : char list = ['a'; 'b'; 'a'; 'b']
+- : char list = ['a'; 'b'; 'a'; 'b'; 'd']
 
 # tc ['a'; 'S'; 'b'; 'S'] (fun x -> x);;
 - : char list = ['a'; 'a'; 'b'; 'a'; 'a'; 'b']
 
-To emphasize the parallel, I've re-used the names `zipped` and +To emphasize the parallel, we've re-used the names `zipped` and `target`. The trace of the procedure will show that these variables take on the same values in the same series of steps as they did during the execution of `tz` above. There will once again be one initial and @@ -190,46 +190,49 @@ the first `match` clause will fire, so the the variable `zipper` will not be instantiated). I have not called the functional argument `unzipped`, although that is -what the parallel would suggest. The reason is that `unzipped` is a -list, but `c` is a function. That's the most crucial difference, the +what the parallel would suggest. The reason is that `unzipped` (in +`tz`) is a list, but `c` (in `tc`) is a function. ('c' stands for +'continuation', of course.) That's the most crucial difference, the point of the excercise, and it should be emphasized. For instance, you can see this difference in the fact that in `tz`, we have to glue -together the two instances of `unzipped` with an explicit `List.append`. -In the `tc` version of the task, we simply compose `c` with itself: -`c o c = fun x -> c (c x)`. +together the two instances of `unzipped` with an explicit (and +relatively computationally inefficient) `List.append`. In the `tc` +version of the task, we simply compose `c` with itself: `c o c = fun x +-> c (c x)`. Why use the identity function as the initial continuation? Well, if -you have already constructed the list "abSd", what's the next step in -the recipe to produce the desired result (which is the same list, -"abSd")? Clearly, the identity continuation. +you have already constructed the initial list `"abSd"`, what's the next +step in the recipe to produce the desired result, i.e, the very same +list, `"abSd"`? Clearly, the identity continuation. A good way to test your understanding is to figure out what the continuation function `c` must be at the point in the computation when `tc` is called with the first argument `"Sd"`. Two choices: is it -`fun x -> a::b::x`, or it is `fun x -> b::a::x`? -The way to see if you're right is to execute the following -command and see what happens: +`fun x -> a::b::x`, or it is `fun x -> b::a::x`? The way to see if +you're right is to execute the following command and see what happens: tc ['S'; 'd'] (fun x -> 'a'::'b'::x);; There are a number of interesting directions we can go with this task. -The task was chosen because the computation can be viewed as a +The reason this task was chosen is because it can be viewed as a simplified picture of a computation using continuations, where `'S'` plays the role of a control operator with some similarities to what is -often called `shift`. In the analogy, the list portrays a string of -functional applications, where `[f1; f2; f3; x]` represents `f1(f2(f3 -x))`. The limitation of the analogy is that it is only possible to -represent computations in which the applications are always -right-branching, i.e., the computation `((f1 f2) f3) x` cannot be -directly represented. +often called `shift`. In the analogy, the input list portrays a +sequence of functional applications, where `[f1; f2; f3; x]` represents +`f1(f2(f3 x))`. The limitation of the analogy is that it is only +possible to represent computations in which the applications are +always right-branching, i.e., the computation `((f1 f2) f3) x` cannot +be directly represented. One possibile development is that we could add a special symbol `'#'`, and then the task would be to copy from the target `'S'` only back to the closest `'#'`. This would allow the task to simulate delimited -continuations (for right-branching computations). +continuations with embedded prompts. + +The reason the task is well-suited to the list zipper is in part +because the list monad has an intimate connection with continuations. +The following section explores this connection. We'll return to the +list task after talking about generalized quantifiers below. + -The task is well-suited to the list zipper because the list monad has -an intimate connection with continuations. The following section -makes this connection. We'll return to the list task after talking -about generalized quantifiers below.