X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=code%2Fmonads.ml;h=3fba1f3216414caa0419bc04527f7bb6b2f64cbb;hp=34ad1cef5771d3ea8caf3c1dc7d1f27bfdc8756a;hb=a1a38a5cfaede25b7e6299cac3275e1ccfd9b2db;hpb=ef6e90fdda821a1d071c93dc50587d1a0fd207b9 diff --git a/code/monads.ml b/code/monads.ml index 34ad1cef..3fba1f32 100644 --- a/code/monads.ml +++ b/code/monads.ml @@ -42,6 +42,17 @@ * have to use operations like `run` to convert the abstract monadic types * to types whose internals you have free access to. * + * Acknowledgements: This is largely based on the mtl library distributed + * with the Glasgow Haskell Compiler. I've also been helped in + * various ways by posts and direct feedback from Oleg Kiselyov and + * Chung-chieh Shan. The following were also useful: + * - + * - Ken Shan "Monads for natural language semantics" + * - http://www.grabmueller.de/martin/www/pub/Transformers.pdf + * - http://en.wikibooks.org/wiki/Haskell/Monad_transformers + * + * Licensing: MIT (if that's compatible with the ghc sources this is partly + * derived from) *) exception Undefined @@ -63,7 +74,7 @@ module Util = struct in loop len [] (* Dirty hack to be a default polymorphic zero. * To implement this cleanly, monads without a natural zero - * should always wrap themselves in an option layer (see Leaf_monad). *) + * should always wrap themselves in an option layer (see Tree_monad). *) let undef = Obj.magic (fun () -> raise Undefined) end @@ -140,6 +151,10 @@ module Monad = struct let run_exn u = if u == Util.undef then raise Undefined else B.run_exn u let (>>=) = bind + (* expressions after >> will be evaluated before they're passed to + * bind, so you can't do `zero () >> assert false` + * this works though: `zero () >>= fun _ -> assert false` + *) let (>>) u v = u >>= fun _ -> v let lift f u = u >>= fun a -> unit (f a) (* lift is called listM, fmap, and <$> in Haskell *) @@ -155,10 +170,21 @@ module Monad = struct let (>=>) f g = fun a -> f a >>= g let do_when test u = if test then u else unit () let do_unless test u = if test then unit () else u - (* not in tail position, will Stack overflow *) + (* A Haskell-like version works: + let rec forever uthunk = uthunk () >>= fun _ -> forever uthunk + * but the recursive call is not in tail position so this can stack overflow. *) let forever uthunk = - let rec loop () = uthunk () >>= fun _ -> loop () - in loop () + let z = zero () in + let id result = result in + let kcell = ref id in + let rec loop _ = + let result = uthunk (kcell := id) >>= chained + in !kcell result + and chained _ = + kcell := loop; z (* we use z only for its polymorphism *) + in loop z + (* Reimplementations of the preceding using a hand-rolled State or StateT +can also stack overflow. *) let sequence ms = let op u v = u >>= fun x -> v >>= fun xs -> unit (x :: xs) in Util.fold_right op ms (unit []) @@ -432,18 +458,10 @@ end = struct | Success a -> a | Error e -> raise (Err.Exc e) let zero () = Util.undef - let plus u v = u - (* - let zero () = Error Err.zero - let plus u v = match (u, v) with - | Success _, _ -> u - (* to satisfy (Catch) laws, plus u zero = u, even if u = Error _ - * otherwise, plus (Error _) v = v *) - | Error _, _ when v = zero -> u - (* combine errors *) - | Error e1, Error e2 when u <> zero -> Error (Err.plus e1 e2) - | Error _, _ -> v - *) + (* satisfies Catch *) + let plus u v = match u with + | Success _ -> u + | Error _ -> if v == Util.undef then u else v end include Monad.Make(Base) (* include (Monad.MakeCatch(Base) : Monad.PLUS with type 'a m := 'a m) *) @@ -472,7 +490,7 @@ end = struct | Error e -> raise (Err.Exc e)) in Wrapped.run_exn w let plus u v = Wrapped.plus u v - let zero () = elevate (Wrapped.zero ()) + let zero () = Wrapped.zero () (* elevate (Wrapped.zero ()) *) end) let throw e = Wrapped.unit (Error e) let catch u handler = Wrapped.bind u (fun t -> match t with @@ -491,26 +509,6 @@ module Failure = Error_monad(struct *) end) -(* -# EL.(run( plus (throw "bye") (unit 20) >>= fun i -> unit(i+10)));; -- : int EL.result = [Failure.Error "bye"; Failure.Success 30] -# LE.(run( plus (elevate (Failure.throw "bye")) (unit 20) >>= fun i -> unit(i+10)));; -- : int LE.result = Failure.Error "bye" -# EL.(run_exn( plus (throw "bye") (unit 20) >>= fun i -> unit(i+10)));; -Exception: Failure "bye". -# LE.(run_exn( plus (elevate (Failure.throw "bye")) (unit 20) >>= fun i -> unit(i+10)));; -Exception: Failure "bye". - -# ES.(run( elevate (S.puts succ) >> throw "bye" >> elevate S.get >>= fun i -> unit(i+10) )) 0;; -- : int Failure.error * S.store = (Failure.Error "bye", 1) -# SE.(run( puts succ >> elevate (Failure.throw "bye") >> get >>= fun i -> unit(i+10) )) 0;; -- : (int * S.store) Failure.result = Failure.Error "bye" -# ES.(run_exn( elevate (S.puts succ) >> throw "bye" >> elevate S.get >>= fun i -> unit(i+10) )) 0;; -Exception: Failure "bye". -# SE.(run_exn( puts succ >> elevate (Failure.throw "bye") >> get >>= fun i -> unit(i+10) )) 0;; -Exception: Failure "bye". - *) - (* must be parameterized on (struct type env = ... end) *) module Reader_monad(Env : sig type env end) : sig @@ -557,15 +555,15 @@ end = struct type ('x,'a) result = env -> ('x,'a) Wrapped.result type ('x,'a) result_exn = env -> ('x,'a) Wrapped.result_exn let elevate w = fun e -> w - let bind u f = fun e -> Wrapped.bind (u e) (fun v -> f v e) + let bind u f = fun e -> Wrapped.bind (u e) (fun a -> f a e) let run u = fun e -> Wrapped.run (u e) let run_exn u = fun e -> Wrapped.run_exn (u e) (* satisfies Distrib *) - let plus u v = fun s -> Wrapped.plus (u s) (v s) - let zero () = elevate (Wrapped.zero ()) + let plus u v = fun e -> Wrapped.plus (u e) (v e) + let zero () = fun e -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end include Monad.MakeT(BaseT) - let ask = fun e -> Wrapped.unit e + let ask = Wrapped.unit let local modifier u = fun e -> u (modifier e) let asks selector = ask >>= (fun e -> try unit (selector e) @@ -630,7 +628,7 @@ end = struct in Wrapped.run_exn w (* satisfies Distrib *) let plus u v = fun s -> Wrapped.plus (u s) (v s) - let zero () = elevate (Wrapped.zero ()) + let zero () = fun s -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end include Monad.MakeT(BaseT) let get = fun s -> Wrapped.unit (s, s) @@ -642,6 +640,7 @@ end = struct end end + (* State monad with different interface (structured store) *) module Ref_monad(V : sig type value @@ -709,7 +708,7 @@ end = struct in Wrapped.run_exn w (* satisfies Distrib *) let plus u v = fun s -> Wrapped.plus (u s) (v s) - let zero () = elevate (Wrapped.zero ()) + let zero () = fun s -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end include Monad.MakeT(BaseT) let newref value = fun s -> Wrapped.unit (alloc value s) @@ -718,7 +717,7 @@ end = struct end end -(* TODO needs a T *) + (* must be parameterized on (struct type log = ... end) *) module Writer_monad(Log : sig type log @@ -735,6 +734,17 @@ end) : sig val listens : (log -> 'b) -> ('x,'a) m -> ('x,'a * 'b) m (* val pass : ('x,'a * (log -> log)) m -> ('x,'a) m *) val censor : (log -> log) -> ('x,'a) m -> ('x,'a) m + (* WriterT transformer *) + module T : functor (Wrapped : Monad.S) -> sig + type ('x,'a) result = ('x,'a * log) Wrapped.result + type ('x,'a) result_exn = ('x,'a * log) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val tell : log -> ('x,unit) m + val listen : ('x,'a) m -> ('x,'a * log) m + val listens : (log -> 'b) -> ('x,'a) m -> ('x,'a * 'b) m + val censor : (log -> log) -> ('x,'a) m -> ('x,'a) m + end end = struct type log = Log.log module Base = struct @@ -742,7 +752,7 @@ end = struct type ('x,'a) result = 'a * log type ('x,'a) result_exn = 'a * log let unit a = (a, Log.zero) - let bind (a, w) f = let (a', w') = f a in (a', Log.plus w w') + let bind (a, w) f = let (b, w') = f a in (b, Log.plus w w') let run u = u let run_exn = run let zero () = Util.undef @@ -754,6 +764,31 @@ end = struct let listens selector u = listen u >>= fun (a, w) -> unit (a, selector w) (* filter listen through selector *) let pass ((a, f), w) = (a, f w) (* usually use censor helper *) let censor f u = pass (u >>= fun a -> unit (a, f)) + module T(Wrapped : Monad.S) = struct + module BaseT = struct + module Wrapped = Wrapped + type ('x,'a) m = ('x,'a * log) Wrapped.m + type ('x,'a) result = ('x,'a * log) Wrapped.result + type ('x,'a) result_exn = ('x,'a * log) Wrapped.result_exn + let elevate w = + Wrapped.bind w (fun a -> Wrapped.unit (a, Log.zero)) + let bind u f = + Wrapped.bind u (fun (a, w) -> + Wrapped.bind (f a) (fun (b, w') -> + Wrapped.unit (b, Log.plus w w'))) + let zero () = elevate (Wrapped.zero ()) + let plus u v = Wrapped.plus u v + let run u = Wrapped.run u + let run_exn u = Wrapped.run_exn u + end + include Monad.MakeT(BaseT) + let tell entries = Wrapped.unit ((), entries) + let listen u = Wrapped.bind u (fun (a, w) -> Wrapped.unit ((a, w), w)) + let pass u = Wrapped.bind u (fun ((a, f), w) -> Wrapped.unit (a, f w)) + (* rest are derived in same way as before *) + let listens selector u = listen u >>= fun (a, w) -> unit (a, selector w) + let censor f u = pass (u >>= fun a -> unit (a, f)) + end end (* pre-define simple Writer *) @@ -812,7 +847,6 @@ end = struct end -(* TODO needs a T *) module Continuation_monad : sig (* expose only the implementation of type `('r,'a) result` *) type ('r,'a) m @@ -825,6 +859,16 @@ module Continuation_monad : sig (* val abort : ('a,'a) m -> ('a,'b) m *) val abort : 'a -> ('a,'b) m val run0 : ('a,'a) m -> 'a + (* ContinuationT transformer *) + module T : functor (Wrapped : Monad.S) -> sig + type ('r,'a) m + type ('r,'a) result = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result + type ('r,'a) result_exn = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result_exn + include Monad.S with type ('r,'a) result := ('r,'a) result and type ('r,'a) result_exn := ('r,'a) result_exn and type ('r,'a) m := ('r,'a) m + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val callcc : (('a -> ('r,'b) m) -> ('r,'a) m) -> ('r,'a) m + (* TODO: reset,shift,abort,run0 *) + end end = struct let id = fun i -> i module Base = struct @@ -863,6 +907,24 @@ end = struct (* let abort a = shift (fun _ -> a) *) let abort a = shift (fun _ -> unit a) let run0 (u : ('a,'a) m) = (u) id + module T(Wrapped : Monad.S) = struct + module BaseT = struct + module Wrapped = Wrapped + type ('r,'a) m = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.m + type ('r,'a) result = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result + type ('r,'a) result_exn = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result_exn + let elevate w = fun k -> Wrapped.bind w k + let bind u f = fun k -> u (fun a -> f a k) + let run u k = Wrapped.run (u k) + let run_exn u k = Wrapped.run_exn (u k) + let zero () = Util.undef + let plus u v = u + end + include Monad.MakeT(BaseT) + let callcc f = (fun k -> + let usek a = (fun _ -> k a) + in (f usek) k) + end end @@ -887,53 +949,17 @@ end * >>= fun x -> unit (x, 0) * in run u) * - * - * (* (+ 1000 (prompt (+ 100 (shift k (+ 10 1))))) ~~> 1011 *) - * let example1 () : int = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> unit (10 + 1)) - * in u >>= fun x -> unit (100 + x) - * ) in let w = v >>= fun x -> unit (1000 + x) - * in run w) - * - * (* (+ 1000 (prompt (+ 100 (shift k (k (+ 10 1)))))) ~~> 1111 *) - * let example2 () = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> k (10 :: [1])) - * in u >>= fun x -> unit (100 :: x) - * ) in let w = v >>= fun x -> unit (1000 :: x) - * in run w) - * - * (* (+ 1000 (prompt (+ 100 (shift k (+ 10 (k 1)))))) ~~> 1111 but added differently *) - * let example3 () = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> k [1] >>= fun x -> unit (10 :: x)) - * in u >>= fun x -> unit (100 :: x) - * ) in let w = v >>= fun x -> unit (1000 :: x) - * in run w) - * - * (* (+ 100 ((prompt (+ 10 (shift k k))) 1)) ~~> 111 *) - * (* not sure if this example can be typed without a sum-type *) - * - * (* (+ 100 (prompt (+ 10 (shift k (k (k 1)))))) ~~> 121 *) - * let example5 () : int = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> k 1 >>= fun x -> k x) - * in u >>= fun x -> unit (10 + x) - * ) in let w = v >>= fun x -> unit (100 + x) - * in run w) - * *) -module Leaf_monad : sig +module Tree_monad : sig (* We implement the type as `'a tree option` because it has a natural`plus`, * and the rest of the library expects that `plus` and `zero` will come together. *) type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree) type ('x,'a) result = 'a tree option type ('x,'a) result_exn = 'a tree include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn - (* LeafT transformer *) + (* TreeT transformer *) module T : functor (Wrapped : Monad.S) -> sig type ('x,'a) result = ('x,'a tree option) Wrapped.result type ('x,'a) result_exn = ('x,'a tree) Wrapped.result_exn @@ -1001,211 +1027,6 @@ end = struct include BaseT let distribute f t = mapT (fun a -> elevate (f a)) t zero plus end -end - - -module L = List_monad;; -module R = Reader_monad(struct type env = int -> int end);; -module S = State_monad(struct type store = int end);; -module T = Leaf_monad;; -module LR = L.T(R);; -module LS = L.T(S);; -module TL = T.T(L);; -module TR = T.T(R);; -module TS = T.T(S);; -module C = Continuation_monad -module TC = T.T(C);; - - -print_endline "=== test Leaf(...).distribute ==================";; - -let t1 = Some (T.Node (T.Node (T.Leaf 2, T.Leaf 3), T.Node (T.Leaf 5, T.Node (T.Leaf 7, T.Leaf 11))));; - -let ts = TS.distribute (fun i -> S.(puts succ >> unit i)) t1;; -TS.run ts 0;; -(* -- : int T.tree option * S.store = -(Some - (T.Node - (T.Node (T.Leaf 2, T.Leaf 3), - T.Node (T.Leaf 5, T.Node (T.Leaf 7, T.Leaf 11)))), - 5) -*) - -let ts2 = TS.distribute (fun i -> S.(puts succ >> get >>= fun n -> unit (i,n))) t1;; -TS.run_exn ts2 0;; -(* -- : (int * S.store) T.tree option * S.store = -(Some - (T.Node - (T.Node (T.Leaf (2, 1), T.Leaf (3, 2)), - T.Node (T.Leaf (5, 3), T.Node (T.Leaf (7, 4), T.Leaf (11, 5))))), - 5) -*) - -let tr = TR.distribute (fun i -> R.asks (fun e -> e i)) t1;; -TR.run_exn tr (fun i -> i+i);; -(* -- : int T.tree option = -Some - (T.Node - (T.Node (T.Leaf 4, T.Leaf 6), - T.Node (T.Leaf 10, T.Node (T.Leaf 14, T.Leaf 22)))) -*) - -let tl = TL.distribute (fun i -> L.(unit (i,i+1))) t1;; -TL.run_exn tl;; -(* -- : (int * int) TL.result = -[Some - (T.Node - (T.Node (T.Leaf (2, 3), T.Leaf (3, 4)), - T.Node (T.Leaf (5, 6), T.Node (T.Leaf (7, 8), T.Leaf (11, 12)))))] -*) - -let l2 = [1;2;3;4;5];; -let t2 = Some (T.Node (T.Leaf 1, (T.Node (T.Node (T.Node (T.Leaf 2, T.Leaf 3), T.Leaf 4), T.Leaf 5))));; - -LR.(run (distribute (fun i -> R.(asks (fun e -> e i))) l2 >>= fun j -> LR.(plus (unit j) (unit (succ j))))) (fun i -> i*10);; -(* int list = [10; 11; 20; 21; 30; 31; 40; 41; 50; 51] *) - -TR.(run_exn (distribute (fun i -> R.(asks (fun e -> e i))) t2 >>= fun j -> TR.(plus (unit j) (unit (succ j))))) (fun i -> i*10);; -(* -int T.tree option = -Some - (T.Node - (T.Node (T.Leaf 10, T.Leaf 11), - T.Node - (T.Node - (T.Node (T.Node (T.Leaf 20, T.Leaf 21), T.Node (T.Leaf 30, T.Leaf 31)), - T.Node (T.Leaf 40, T.Leaf 41)), - T.Node (T.Leaf 50, T.Leaf 51)))) - *) - -LS.run (LS.distribute (fun i -> if i = -1 then S.get else if i < 0 then S.(puts succ >> unit 0) else S.unit i) [10;-1;-2;-1;20]) 0;; -(* -- : S.store list * S.store = ([10; 0; 0; 1; 20], 1) -*) - -print_endline "=== test Leaf(Continuation).distribute ==================";; - -let id : 'z. 'z -> 'z = fun x -> x - -let example n : (int * int) = - Continuation_monad.(let u = callcc (fun k -> - (if n < 0 then k 0 else unit [n + 100]) - (* all of the following is skipped by k 0; the end type int is k's input type *) - >>= fun [x] -> unit (x + 1) - ) - (* k 0 starts again here, outside the callcc (...); the end type int * int is k's output type *) - >>= fun x -> unit (x, 0) - in run0 u) - - -(* (+ 1000 (prompt (+ 100 (shift k (+ 10 1))))) ~~> 1011 *) -let example1 () : int = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> unit (10 + 1)) - in u >>= fun x -> unit (100 + x) - ) in let w = v >>= fun x -> unit (1000 + x) - in run0 w) - -(* (+ 1000 (prompt (+ 100 (shift k (k (+ 10 1)))))) ~~> 1111 *) -let example2 () = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> k (10 :: [1])) - in u >>= fun x -> unit (100 :: x) - ) in let w = v >>= fun x -> unit (1000 :: x) - in run0 w) - -(* (+ 1000 (prompt (+ 100 (shift k (+ 10 (k 1)))))) ~~> 1111 but added differently *) -let example3 () = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> k [1] >>= fun x -> unit (10 :: x)) - in u >>= fun x -> unit (100 :: x) - ) in let w = v >>= fun x -> unit (1000 :: x) - in run0 w) - -(* (+ 100 ((prompt (+ 10 (shift k k))) 1)) ~~> 111 *) -(* not sure if this example can be typed without a sum-type *) - -(* (+ 100 (prompt (+ 10 (shift k (k (k 1)))))) ~~> 121 *) -let example5 () : int = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> k 1 >>= k) - in u >>= fun x -> unit (10 + x) - ) in let w = v >>= fun x -> unit (100 + x) - in run0 w) - -;; - -print_endline "=== test bare Continuation ============";; - -(1011, 1111, 1111, 121);; -(example1(), example2(), example3(), example5());; -((111,0), (0,0));; -(example ~+10, example ~-10);; - -let testc df ic = - C.run_exn TC.(run (distribute df t1)) ic;; - - -(* -(* do nothing *) -let initial_continuation = fun t -> t in -TreeCont.monadize t1 Continuation_monad.unit initial_continuation;; -*) -testc (C.unit) id;; - -(* -(* count leaves, using continuation *) -let initial_continuation = fun t -> 0 in -TreeCont.monadize t1 (fun a k -> 1 + k a) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k a >>= fun v -> unit (1 + v))) (fun t -> 0);; - -(* -(* convert tree to list of leaves *) -let initial_continuation = fun t -> [] in -TreeCont.monadize t1 (fun a k -> a :: k a) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k a >>= fun v -> unit (a::v))) (fun t -> ([] : int list));; - -(* -(* square each leaf using continuation *) -let initial_continuation = fun t -> t in -TreeCont.monadize t1 (fun a k -> k (a*a)) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k (a*a))) (fun t -> t);; - - -(* -(* replace leaves with list, using continuation *) -let initial_continuation = fun t -> t in -TreeCont.monadize t1 (fun a k -> k [a; a*a]) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k (a,a+1))) (fun t -> t);; - -print_endline "=== pa_monad's Continuation Tests ============";; - -(1, 5 = C.(run0 (unit 1 >>= fun x -> unit (x+4))) );; -(2, 9 = C.(run0 (reset (unit 5 >>= fun x -> unit (x+4)))) );; -(3, 9 = C.(run0 (reset (abort 5 >>= fun y -> unit (y+6)) >>= fun x -> unit (x+4))) );; -(4, 9 = C.(run0 (reset (reset (abort 5 >>= fun y -> unit (y+6))) >>= fun x -> unit (x+4))) );; -(5, 27 = C.(run0 ( - let c = reset(abort 5 >>= fun y -> unit (y+6)) - in reset(c >>= fun v1 -> abort 7 >>= fun v2 -> unit (v2+10) ) >>= fun x -> unit (x+20))) );; - -(7, 117 = C.(run0 (reset (shift (fun sk -> sk 3 >>= sk >>= fun v3 -> unit (v3+100) ) >>= fun v1 -> unit (v1+2)) >>= fun x -> unit (x+10))) );; - -(8, 115 = C.(run0 (reset (shift (fun sk -> sk 3 >>= fun v3 -> unit (v3+100)) >>= fun v1 -> unit (v1+2)) >>= fun x -> unit (x+10))) );; - -(12, ["a"] = C.(run0 (reset (shift (fun f -> f [] >>= fun t -> unit ("a"::t) ) >>= fun xv -> shift (fun _ -> unit xv)))) );; - +end;; -(0, 15 = C.(run0 (let f k = k 10 >>= fun v-> unit (v+100) in reset (callcc f >>= fun v -> unit (v+5)))) );;