X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=code%2Fmonads.ml;h=3fba1f3216414caa0419bc04527f7bb6b2f64cbb;hp=0dab871253c82b72e19a9855eedd7fd6e2a948c6;hb=8f043cd83b65c90928ab884d52be168b93d23a6c;hpb=d3ea4212bbca7a47f8aae537023852fd9a214389 diff --git a/code/monads.ml b/code/monads.ml index 0dab8712..3fba1f32 100644 --- a/code/monads.ml +++ b/code/monads.ml @@ -42,8 +42,20 @@ * have to use operations like `run` to convert the abstract monadic types * to types whose internals you have free access to. * + * Acknowledgements: This is largely based on the mtl library distributed + * with the Glasgow Haskell Compiler. I've also been helped in + * various ways by posts and direct feedback from Oleg Kiselyov and + * Chung-chieh Shan. The following were also useful: + * - + * - Ken Shan "Monads for natural language semantics" + * - http://www.grabmueller.de/martin/www/pub/Transformers.pdf + * - http://en.wikibooks.org/wiki/Haskell/Monad_transformers + * + * Licensing: MIT (if that's compatible with the ghc sources this is partly + * derived from) *) +exception Undefined (* Some library functions used below. *) module Util = struct @@ -60,6 +72,10 @@ module Util = struct let rec loop n accu = if n == 0 then accu else loop (pred n) (fill :: accu) in loop len [] + (* Dirty hack to be a default polymorphic zero. + * To implement this cleanly, monads without a natural zero + * should always wrap themselves in an option layer (see Tree_monad). *) + let undef = Obj.magic (fun () -> raise Undefined) end @@ -73,53 +89,72 @@ module Monad = struct (* * Signature extenders: * Make :: BASE -> S - * MakeCatch, MakeDistrib :: PLUSBASE -> PLUS - * which merges into S - * (P is merged sig) - * MakeT :: TRANS (with Wrapped : S or P) -> custom sig - * - * Make2 :: BASE2 -> S2 - * MakeCatch2, MakeDistrib2 :: PLUSBASE2 -> PLUS2 (P2 is merged sig) - * to wrap double-typed inner monads: - * MakeT2 :: TRANS2 (with Wrapped : S2 or P2) -> custom sig - * + * MakeT :: BASET (with Wrapped : S) -> result sig not declared *) - (* type of base definitions *) module type BASE = sig - (* The only constraints we impose here on how the monadic type - * is implemented is that it have a single type parameter 'a. *) - type 'a m - type 'a result - type 'a result_exn - val unit : 'a -> 'a m - val bind : 'a m -> ('a -> 'b m) -> 'b m - val run : 'a m -> 'a result + (* We make all monadic types doubly-parameterized so that they + * can layer nicely with Continuation, which needs the second + * type parameter. *) + type ('x,'a) m + type ('x,'a) result + type ('x,'a) result_exn + val unit : 'a -> ('x,'a) m + val bind : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m + val run : ('x,'a) m -> ('x,'a) result (* run_exn tries to provide a more ground-level result, but may fail *) - val run_exn : 'a m -> 'a result_exn + val run_exn : ('x,'a) m -> ('x,'a) result_exn + (* To simplify the library, we require every monad to supply a plus and zero. These obey the following laws: + * zero >>= f === zero + * plus zero u === u + * plus u zero === u + * Additionally, they will obey one of the following laws: + * (Catch) plus (unit a) v === unit a + * (Distrib) plus u v >>= f === plus (u >>= f) (v >>= f) + * When no natural zero is available, use `let zero () = Util.undef`. + * The Make functor automatically detects for zero >>= ..., and + * plus zero _, plus _ zero; it also substitutes zero for pattern-match failures. + *) + val zero : unit -> ('x,'a) m + (* zero has to be thunked to ensure results are always poly enough *) + val plus : ('x,'a) m -> ('x,'a) m -> ('x,'a) m end module type S = sig include BASE - val (>>=) : 'a m -> ('a -> 'b m) -> 'b m - val (>>) : 'a m -> 'b m -> 'b m - val join : ('a m) m -> 'a m - val apply : ('a -> 'b) m -> 'a m -> 'b m - val lift : ('a -> 'b) -> 'a m -> 'b m - val lift2 : ('a -> 'b -> 'c) -> 'a m -> 'b m -> 'c m - val (>=>) : ('a -> 'b m) -> ('b -> 'c m) -> 'a -> 'c m - val do_when : bool -> unit m -> unit m - val do_unless : bool -> unit m -> unit m - val forever : 'a m -> 'b m - val sequence : 'a m list -> 'a list m - val sequence_ : 'a m list -> unit m + val (>>=) : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m + val (>>) : ('x,'a) m -> ('x,'b) m -> ('x,'b) m + val join : ('x,('x,'a) m) m -> ('x,'a) m + val apply : ('x,'a -> 'b) m -> ('x,'a) m -> ('x,'b) m + val lift : ('a -> 'b) -> ('x,'a) m -> ('x,'b) m + val lift2 : ('a -> 'b -> 'c) -> ('x,'a) m -> ('x,'b) m -> ('x,'c) m + val (>=>) : ('a -> ('x,'b) m) -> ('b -> ('x,'c) m) -> 'a -> ('x,'c) m + val do_when : bool -> ('x,unit) m -> ('x,unit) m + val do_unless : bool -> ('x,unit) m -> ('x,unit) m + val forever : (unit -> ('x,'a) m) -> ('x,'b) m + val sequence : ('x,'a) m list -> ('x,'a list) m + val sequence_ : ('x,'a) m list -> ('x,unit) m + val guard : bool -> ('x,unit) m + val sum : ('x,'a) m list -> ('x,'a) m end - (* Standard, single-type-parameter monads. *) - module Make(B : BASE) : S with type 'a m = 'a B.m and type 'a result = 'a B.result and type 'a result_exn = 'a B.result_exn = struct + module Make(B : BASE) : S with type ('x,'a) m = ('x,'a) B.m and type ('x,'a) result = ('x,'a) B.result and type ('x,'a) result_exn = ('x,'a) B.result_exn = struct include B + let bind (u : ('x,'a) m) (f : 'a -> ('x,'b) m) : ('x,'b) m = + if u == Util.undef then Util.undef + else B.bind u (fun a -> try f a with Match_failure _ -> zero ()) + let plus u v = + if u == Util.undef then v else if v == Util.undef then u else B.plus u v + let run u = + if u == Util.undef then raise Undefined else B.run u + let run_exn u = + if u == Util.undef then raise Undefined else B.run_exn u let (>>=) = bind + (* expressions after >> will be evaluated before they're passed to + * bind, so you can't do `zero () >> assert false` + * this works though: `zero () >>= fun _ -> assert false` + *) let (>>) u v = u >>= fun _ -> v let lift f u = u >>= fun a -> unit (f a) (* lift is called listM, fmap, and <$> in Haskell *) @@ -135,7 +170,21 @@ module Monad = struct let (>=>) f g = fun a -> f a >>= g let do_when test u = if test then u else unit () let do_unless test u = if test then unit () else u - let rec forever u = u >> forever u + (* A Haskell-like version works: + let rec forever uthunk = uthunk () >>= fun _ -> forever uthunk + * but the recursive call is not in tail position so this can stack overflow. *) + let forever uthunk = + let z = zero () in + let id result = result in + let kcell = ref id in + let rec loop _ = + let result = uthunk (kcell := id) >>= chained + in !kcell result + and chained _ = + kcell := loop; z (* we use z only for its polymorphism *) + in loop z + (* Reimplementations of the preceding using a hand-rolled State or StateT +can also stack overflow. *) let sequence ms = let op u v = u >>= fun x -> v >>= fun xs -> unit (x :: xs) in Util.fold_right op ms (unit []) @@ -163,155 +212,29 @@ module Monad = struct let replicateM n x = sequence (Util.replicate n x) let replicateM_ n x = sequence_ (Util.replicate n x) *) - end - - (* Single-type-parameter monads that also define `plus` and `zero` - * operations. These obey the following laws: - * zero >>= f === zero - * plus zero u === u - * plus u zero === u - * Additionally, these monads will obey one of the following laws: - * (Catch) plus (unit a) v === unit a - * (Distrib) plus u v >>= f === plus (u >>= f) (v >>= f) - *) - module type PLUSBASE = sig - include BASE - val zero : unit -> 'a m - val plus : 'a m -> 'a m -> 'a m - end - module type PLUS = sig - type 'a m - val zero : unit -> 'a m - val plus : 'a m -> 'a m -> 'a m - val guard : bool -> unit m - val sum : 'a m list -> 'a m - end - (* MakeCatch and MakeDistrib have the same implementation; we just declare - * them twice to document which laws the client code is promising to honor. *) - module MakeCatch(B : PLUSBASE) : PLUS with type 'a m = 'a B.m = struct - type 'a m = 'a B.m - let zero = B.zero - let plus = B.plus let guard test = if test then B.unit () else zero () let sum ms = Util.fold_right plus ms (zero ()) end - module MakeDistrib = MakeCatch (* Signatures for MonadT *) - (* sig for Wrapped that include S and PLUS *) - module type P = sig - include S - include PLUS with type 'a m := 'a m - end - module type TRANS = sig + module type BASET = sig module Wrapped : S - type 'a m - type 'a result - type 'a result_exn - val bind : 'a m -> ('a -> 'b m) -> 'b m - val run : 'a m -> 'a result - val run_exn : 'a m -> 'a result_exn - val elevate : 'a Wrapped.m -> 'a m - (* lift/elevate laws: - * elevate (W.unit a) == unit a - * elevate (W.bind w f) == elevate w >>= fun a -> elevate (f a) - *) - end - module MakeT(T : TRANS) = struct - include Make(struct - include T - let unit a = elevate (Wrapped.unit a) - end) - let elevate = T.elevate - end - - - (* We have to define BASE, S, and Make again for double-type-parameter monads. *) - module type BASE2 = sig type ('x,'a) m type ('x,'a) result type ('x,'a) result_exn - val unit : 'a -> ('x,'a) m val bind : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m val run : ('x,'a) m -> ('x,'a) result val run_exn : ('x,'a) m -> ('x,'a) result_exn - end - module type S2 = sig - include BASE2 - val (>>=) : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m - val (>>) : ('x,'a) m -> ('x,'b) m -> ('x,'b) m - val join : ('x,('x,'a) m) m -> ('x,'a) m - val apply : ('x,'a -> 'b) m -> ('x,'a) m -> ('x,'b) m - val lift : ('a -> 'b) -> ('x,'a) m -> ('x,'b) m - val lift2 : ('a -> 'b -> 'c) -> ('x,'a) m -> ('x,'b) m -> ('x,'c) m - val (>=>) : ('a -> ('x,'b) m) -> ('b -> ('x,'c) m) -> 'a -> ('x,'c) m - val do_when : bool -> ('x,unit) m -> ('x,unit) m - val do_unless : bool -> ('x,unit) m -> ('x,unit) m - val forever : ('x,'a) m -> ('x,'b) m - val sequence : ('x,'a) m list -> ('x,'a list) m - val sequence_ : ('x,'a) m list -> ('x,unit) m - end - module Make2(B : BASE2) : S2 with type ('x,'a) m = ('x,'a) B.m and type ('x,'a) result = ('x,'a) B.result and type ('x,'a) result_exn = ('x,'a) B.result_exn = struct - (* code repetition, ugh *) - include B - let (>>=) = bind - let (>>) u v = u >>= fun _ -> v - let lift f u = u >>= fun a -> unit (f a) - let join uu = uu >>= fun u -> u - let apply u v = u >>= fun f -> v >>= fun a -> unit (f a) - let lift2 f u v = u >>= fun a -> v >>= fun a' -> unit (f a a') - let (>=>) f g = fun a -> f a >>= g - let do_when test u = if test then u else unit () - let do_unless test u = if test then unit () else u - let rec forever u = u >> forever u - let sequence ms = - let op u v = u >>= fun x -> v >>= fun xs -> unit (x :: xs) in - Util.fold_right op ms (unit []) - let sequence_ ms = - Util.fold_right (>>) ms (unit ()) - end - - module type PLUSBASE2 = sig - include BASE2 - val zero : unit -> ('x,'a) m - val plus : ('x,'a) m -> ('x,'a) m -> ('x,'a) m - end - module type PLUS2 = sig - type ('x,'a) m + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + (* lift/elevate laws: + * elevate (W.unit a) == unit a + * elevate (W.bind w f) == elevate w >>= fun a -> elevate (f a) + *) val zero : unit -> ('x,'a) m val plus : ('x,'a) m -> ('x,'a) m -> ('x,'a) m - val guard : bool -> ('x,unit) m - val sum : ('x,'a) m list -> ('x,'a) m end - module MakeCatch2(B : PLUSBASE2) : PLUS2 with type ('x,'a) m = ('x,'a) B.m = struct - type ('x,'a) m = ('x,'a) B.m - (* code repetition, ugh *) - let zero = B.zero - let plus = B.plus - let guard test = if test then B.unit () else zero () - let sum ms = Util.fold_right plus ms (zero ()) - end - module MakeDistrib2 = MakeCatch2 - - (* Signatures for MonadT *) - (* sig for Wrapped that include S and PLUS *) - module type P2 = sig - include S2 - include PLUS2 with type ('x,'a) m := ('x,'a) m - end - module type TRANS2 = sig - module Wrapped : S2 - type ('x,'a) m - type ('x,'a) result - type ('x,'a) result_exn - val bind : ('x,'a) m -> ('a -> ('x,'b) m) -> ('x,'b) m - val run : ('x,'a) m -> ('x,'a) result - val run_exn : ('x,'a) m -> ('x,'a) result_exn - val elevate : ('x,'a) Wrapped.m -> ('x,'a) m - end - module MakeT2(T : TRANS2) = struct - (* code repetition, ugh *) - include Make2(struct + module MakeT(T : BASET) = struct + include Make(struct include T let unit a = elevate (Wrapped.unit a) end) @@ -326,18 +249,20 @@ end module Identity_monad : sig (* expose only the implementation of type `'a result` *) - type 'a result = 'a - type 'a result_exn = 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn + type ('x,'a) result = 'a + type ('x,'a) result_exn = 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn end = struct module Base = struct - type 'a m = 'a + type ('x,'a) m = 'a + type ('x,'a) result = 'a + type ('x,'a) result_exn = 'a let unit a = a let bind a f = f a - type 'a result = 'a let run a = a - type 'a result_exn = 'a let run_exn a = a + let zero () = Util.undef + let plus u v = u end include Monad.Make(Base) end @@ -345,73 +270,39 @@ end module Maybe_monad : sig (* expose only the implementation of type `'a result` *) - type 'a result = 'a option - type 'a result_exn = 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - include Monad.PLUS with type 'a m := 'a m + type ('x,'a) result = 'a option + type ('x,'a) result_exn = 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn (* MaybeT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = 'a option Wrapped.result - type 'a result_exn = 'a Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - include Monad.PLUS with type 'a m := 'a m - val elevate : 'a Wrapped.m -> 'a m - end - module T2 : functor (Wrapped : Monad.S2) -> sig type ('x,'a) result = ('x,'a option) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn - include Monad.S2 with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn - include Monad.PLUS2 with type ('x,'a) m := ('x,'a) m + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn val elevate : ('x,'a) Wrapped.m -> ('x,'a) m end end = struct module Base = struct - type 'a m = 'a option - let unit a = Some a - let bind u f = match u with Some a -> f a | None -> None - type 'a result = 'a option - let run u = u - type 'a result_exn = 'a - let run_exn u = match u with - | Some a -> a - | None -> failwith "no value" - let zero () = None - let plus u v = match u with None -> v | _ -> u + type ('x,'a) m = 'a option + type ('x,'a) result = 'a option + type ('x,'a) result_exn = 'a + let unit a = Some a + let bind u f = match u with Some a -> f a | None -> None + let run u = u + let run_exn u = match u with + | Some a -> a + | None -> failwith "no value" + let zero () = None + (* satisfies Catch *) + let plus u v = match u with None -> v | _ -> u end include Monad.Make(Base) - include (Monad.MakeCatch(Base) : Monad.PLUS with type 'a m := 'a m) module T(Wrapped : Monad.S) = struct - module Trans = struct + module BaseT = struct include Monad.MakeT(struct module Wrapped = Wrapped - type 'a m = 'a option Wrapped.m - type 'a result = 'a option Wrapped.result - type 'a result_exn = 'a Wrapped.result_exn - let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Some a)) - let bind u f = Wrapped.bind u (fun t -> match t with - | Some a -> f a - | None -> Wrapped.unit None) - let run u = Wrapped.run u - let run_exn u = - let w = Wrapped.bind u (fun t -> match t with - | Some a -> Wrapped.unit a - | None -> failwith "no value") - in Wrapped.run_exn w - end) - let zero () = Wrapped.unit None - let plus u v = Wrapped.bind u (fun t -> match t with | None -> v | _ -> u) - end - include Trans - include (Monad.MakeCatch(Trans) : Monad.PLUS with type 'a m := 'a m) - end - module T2(Wrapped : Monad.S2) = struct - module Trans = struct - include Monad.MakeT2(struct - module Wrapped = Wrapped type ('x,'a) m = ('x,'a option) Wrapped.m type ('x,'a) result = ('x,'a option) Wrapped.result type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn - (* code repetition, ugh *) let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Some a)) let bind u f = Wrapped.bind u (fun t -> match t with | Some a -> f a @@ -420,68 +311,55 @@ end = struct let run_exn u = let w = Wrapped.bind u (fun t -> match t with | Some a -> Wrapped.unit a - | None -> failwith "no value") - in Wrapped.run_exn w + | None -> Wrapped.zero () + ) in Wrapped.run_exn w + let zero () = Wrapped.unit None + let plus u v = Wrapped.bind u (fun t -> match t with | None -> v | _ -> u) end) - let zero () = Wrapped.unit None - let plus u v = Wrapped.bind u (fun t -> match t with | None -> v | _ -> u) end - include Trans - include (Monad.MakeCatch2(Trans) : Monad.PLUS2 with type ('x,'a) m := ('x,'a) m) + include BaseT end end module List_monad : sig (* declare additional operation, while still hiding implementation of type m *) - type 'a result = 'a list - type 'a result_exn = 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - include Monad.PLUS with type 'a m := 'a m - val permute : 'a m -> 'a m m - val select : 'a m -> ('a * 'a m) m + type ('x,'a) result = 'a list + type ('x,'a) result_exn = 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val permute : ('x,'a) m -> ('x,('x,'a) m) m + val select : ('x,'a) m -> ('x,'a * ('x,'a) m) m (* ListT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = 'a list Wrapped.result - type 'a result_exn = 'a Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - include Monad.PLUS with type 'a m := 'a m - val elevate : 'a Wrapped.m -> 'a m + type ('x,'a) result = ('x,'a list) Wrapped.result + type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m (* note that second argument is an 'a list, not the more abstract 'a m *) (* type is ('a -> 'b W) -> 'a list -> 'b list W == 'b listT(W) *) - val distribute : ('a -> 'b Wrapped.m) -> 'a list -> 'b m + val distribute : ('a -> ('x,'b) Wrapped.m) -> 'a list -> ('x,'b) m (* TODO val permute : 'a m -> 'a m m val select : 'a m -> ('a * 'a m) m *) end -(* - module T2 : functor (Wrapped : Monad.S2) -> sig - type ('x,'a) result = ('x,'a list) Wrapped.result - type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn - include Monad.S2 with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn - include Monad.PLUS2 with type ('x,'a) m := ('x,'a) m - val elevate : ('x,'a) Wrapped.m -> ('x,'a) m - val distribute : ('a -> ('x,'b) Wrapped.m) -> 'a list -> ('x,'b) m - end - *) end = struct module Base = struct - type 'a m = 'a list + type ('x,'a) m = 'a list + type ('x,'a) result = 'a list + type ('x,'a) result_exn = 'a let unit a = [a] let bind u f = Util.concat_map f u - type 'a result = 'a list let run u = u - type 'a result_exn = 'a let run_exn u = match u with | [] -> failwith "no values" | [a] -> a | many -> failwith "multiple values" let zero () = [] + (* satisfies Distrib *) let plus = Util.append end include Monad.Make(Base) - include (Monad.MakeDistrib(Base) : Monad.PLUS with type 'a m := 'a m) (* let either u v = plus u v *) (* insert 3 [1;2] ~~> [[3;1;2]; [1;3;2]; [1;2;3]] *) let rec insert a u = @@ -497,43 +375,39 @@ end = struct let rec select u = match u with | [] -> zero () | x::xs -> plus (unit (x, xs)) (select xs >>= fun (x', xs') -> unit (x', x :: xs')) - let base_plus = plus module T(Wrapped : Monad.S) = struct - module Trans = struct + (* Wrapped.sequence ms === + let plus1 u v = + Wrapped.bind u (fun x -> + Wrapped.bind v (fun xs -> + Wrapped.unit (x :: xs))) + in Util.fold_right plus1 ms (Wrapped.unit []) *) + (* distribute === Wrapped.mapM; copies alist to its image under f *) + let distribute f alist = Wrapped.sequence (Util.map f alist) + + include Monad.MakeT(struct + module Wrapped = Wrapped + type ('x,'a) m = ('x,'a list) Wrapped.m + type ('x,'a) result = ('x,'a list) Wrapped.result + type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn + let elevate w = Wrapped.bind w (fun a -> Wrapped.unit [a]) + let bind u f = + Wrapped.bind u (fun ts -> + Wrapped.bind (distribute f ts) (fun tts -> + Wrapped.unit (Util.concat tts))) + let run u = Wrapped.run u + let run_exn u = + let w = Wrapped.bind u (fun ts -> match ts with + | [] -> Wrapped.zero () + | [a] -> Wrapped.unit a + | many -> Wrapped.zero () + ) in Wrapped.run_exn w let zero () = Wrapped.unit [] let plus u v = Wrapped.bind u (fun us -> Wrapped.bind v (fun vs -> - Wrapped.unit (base_plus us vs))) - (* Wrapped.sequence ms === - let plus1 u v = - Wrapped.bind u (fun x -> - Wrapped.bind v (fun xs -> - Wrapped.unit (x :: xs))) - in Util.fold_right plus1 ms (Wrapped.unit []) *) - (* distribute === Wrapped.mapM; copies alist to its image under f *) - let distribute f alist = Wrapped.sequence (Util.map f alist) - include Monad.MakeT(struct - module Wrapped = Wrapped - type 'a m = 'a list Wrapped.m - type 'a result = 'a list Wrapped.result - type 'a result_exn = 'a Wrapped.result_exn - let elevate w = Wrapped.bind w (fun a -> Wrapped.unit [a]) - let bind u f = - Wrapped.bind u (fun ts -> - Wrapped.bind (distribute f ts) (fun tts -> - Wrapped.unit (Util.concat tts))) - let run u = Wrapped.run u - let run_exn u = - let w = Wrapped.bind u (fun ts -> match ts with - | [] -> failwith "no values" - | [a] -> Wrapped.unit a - | many -> failwith "multiple values" - ) in Wrapped.run_exn w - end) - end - include Trans - include (Monad.MakeDistrib(Trans) : Monad.PLUS with type 'a m := 'a m) + Wrapped.unit (Base.plus us vs))) + end) (* let permute : 'a m -> 'a m m let select : 'a m -> ('a * 'a m) m @@ -554,48 +428,40 @@ end) : sig (* declare additional operations, while still hiding implementation of type m *) type err = Err.err type 'a error = Error of err | Success of 'a - type 'a result = 'a - type 'a result_exn = 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - (* include Monad.PLUS with type 'a m := 'a m *) - val throw : err -> 'a m - val catch : 'a m -> (err -> 'a m) -> 'a m + type ('x,'a) result = 'a error + type ('x,'a) result_exn = 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val throw : err -> ('x,'a) m + val catch : ('x,'a) m -> (err -> ('x,'a) m) -> ('x,'a) m (* ErrorT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = 'a Wrapped.result - type 'a result_exn = 'a Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val elevate : 'a Wrapped.m -> 'a m - val throw : err -> 'a m - val catch : 'a m -> (err -> 'a m) -> 'a m + type ('x,'a) result = ('x,'a) Wrapped.result + type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val throw : err -> ('x,'a) m + val catch : ('x,'a) m -> (err -> ('x,'a) m) -> ('x,'a) m end end = struct type err = Err.err type 'a error = Error of err | Success of 'a module Base = struct - type 'a m = 'a error + type ('x,'a) m = 'a error + type ('x,'a) result = 'a error + type ('x,'a) result_exn = 'a let unit a = Success a let bind u f = match u with | Success a -> f a | Error e -> Error e (* input and output may be of different 'a types *) - type 'a result = 'a - (* TODO: should run refrain from failing? *) - let run u = match u with + let run u = u + let run_exn u = match u with | Success a -> a | Error e -> raise (Err.Exc e) - type 'a result_exn = 'a - let run_exn = run - (* - let zero () = Error Err.zero - let plus u v = match (u, v) with - | Success _, _ -> u - (* to satisfy (Catch) laws, plus u zero = u, even if u = Error _ - * otherwise, plus (Error _) v = v *) - | Error _, _ when v = zero -> u - (* combine errors *) - | Error e1, Error e2 when u <> zero -> Error (Err.plus e1 e2) - | Error _, _ -> v - *) + let zero () = Util.undef + (* satisfies Catch *) + let plus u v = match u with + | Success _ -> u + | Error _ -> if v == Util.undef then u else v end include Monad.Make(Base) (* include (Monad.MakeCatch(Base) : Monad.PLUS with type 'a m := 'a m) *) @@ -604,30 +470,28 @@ end = struct | Success _ -> u | Error e -> handler e module T(Wrapped : Monad.S) = struct - module Trans = struct + include Monad.MakeT(struct module Wrapped = Wrapped - type 'a m = 'a Base.m Wrapped.m + type ('x,'a) m = ('x,'a error) Wrapped.m + type ('x,'a) result = ('x,'a) Wrapped.result + type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Success a)) let bind u f = Wrapped.bind u (fun t -> match t with | Success a -> f a | Error e -> Wrapped.unit (Error e)) - type 'a result = 'a Wrapped.result - (* TODO: should run refrain from failing? *) let run u = let w = Wrapped.bind u (fun t -> match t with | Success a -> Wrapped.unit a - (* | _ -> Wrapped.fail () *) - | Error e -> raise (Err.Exc e)) - in Wrapped.run w - type 'a result_exn = 'a Wrapped.result_exn + | Error e -> Wrapped.zero () + ) in Wrapped.run w let run_exn u = let w = Wrapped.bind u (fun t -> match t with | Success a -> Wrapped.unit a - (* | _ -> Wrapped.fail () *) | Error e -> raise (Err.Exc e)) in Wrapped.run_exn w - end - include Monad.MakeT(Trans) + let plus u v = Wrapped.plus u v + let zero () = Wrapped.zero () (* elevate (Wrapped.zero ()) *) + end) let throw e = Wrapped.unit (Error e) let catch u handler = Wrapped.bind u (fun t -> match t with | Success _ -> Wrapped.unit t @@ -645,73 +509,65 @@ module Failure = Error_monad(struct *) end) + (* must be parameterized on (struct type env = ... end) *) module Reader_monad(Env : sig type env end) : sig (* declare additional operations, while still hiding implementation of type m *) type env = Env.env - type 'a result = env -> 'a - type 'a result_exn = env -> 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val ask : env m - val asks : (env -> 'a) -> 'a m - val local : (env -> env) -> 'a m -> 'a m + type ('x,'a) result = env -> 'a + type ('x,'a) result_exn = env -> 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val ask : ('x,env) m + val asks : (env -> 'a) -> ('x,'a) m + (* lookup i == `fun e -> e i` would assume env is a functional type *) + val local : (env -> env) -> ('x,'a) m -> ('x,'a) m (* ReaderT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = env -> 'a Wrapped.result - type 'a result_exn = env -> 'a Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val elevate : 'a Wrapped.m -> 'a m - val ask : env m - val asks : (env -> 'a) -> 'a m - val local : (env -> env) -> 'a m -> 'a m - end - (* ReaderT transformer when wrapped monad has plus, zero *) - module TP : functor (Wrapped : Monad.P) -> sig - include module type of T(Wrapped) - include Monad.PLUS with type 'a m := 'a m + type ('x,'a) result = env -> ('x,'a) Wrapped.result + type ('x,'a) result_exn = env -> ('x,'a) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val ask : ('x,env) m + val asks : (env -> 'a) -> ('x,'a) m + val local : (env -> env) -> ('x,'a) m -> ('x,'a) m end end = struct type env = Env.env module Base = struct - type 'a m = env -> 'a + type ('x,'a) m = env -> 'a + type ('x,'a) result = env -> 'a + type ('x,'a) result_exn = env -> 'a let unit a = fun e -> a let bind u f = fun e -> let a = u e in let u' = f a in u' e - type 'a result = env -> 'a let run u = fun e -> u e - type 'a result_exn = env -> 'a let run_exn = run + let zero () = Util.undef + let plus u v = u end include Monad.Make(Base) let ask = fun e -> e let asks selector = ask >>= (fun e -> unit (selector e)) (* may fail *) let local modifier u = fun e -> u (modifier e) module T(Wrapped : Monad.S) = struct - module Trans = struct + module BaseT = struct module Wrapped = Wrapped - type 'a m = env -> 'a Wrapped.m + type ('x,'a) m = env -> ('x,'a) Wrapped.m + type ('x,'a) result = env -> ('x,'a) Wrapped.result + type ('x,'a) result_exn = env -> ('x,'a) Wrapped.result_exn let elevate w = fun e -> w - let bind u f = fun e -> Wrapped.bind (u e) (fun v -> f v e) - type 'a result = env -> 'a Wrapped.result + let bind u f = fun e -> Wrapped.bind (u e) (fun a -> f a e) let run u = fun e -> Wrapped.run (u e) - type 'a result_exn = env -> 'a Wrapped.result_exn let run_exn u = fun e -> Wrapped.run_exn (u e) + (* satisfies Distrib *) + let plus u v = fun e -> Wrapped.plus (u e) (v e) + let zero () = fun e -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end - include Monad.MakeT(Trans) - let ask = fun e -> Wrapped.unit e - let asks selector = ask >>= (fun e -> unit (selector e)) (* may fail *) + include Monad.MakeT(BaseT) + let ask = Wrapped.unit let local modifier u = fun e -> u (modifier e) - end - module TP(Wrapped : Monad.P) = struct - module TransP = struct - include T(Wrapped) - let plus u v = fun s -> Wrapped.plus (u s) (v s) - let zero () = elevate (Wrapped.zero ()) - let asks selector = ask >>= (fun e -> - try unit (selector e) - with Not_found -> fun e -> Wrapped.zero ()) - end - include TransP - include (Monad.MakeDistrib(TransP) : Monad.PLUS with type 'a m := 'a m) + let asks selector = ask >>= (fun e -> + try unit (selector e) + with Not_found -> fun e -> Wrapped.zero ()) end end @@ -720,39 +576,36 @@ end module State_monad(Store : sig type store end) : sig (* declare additional operations, while still hiding implementation of type m *) type store = Store.store - type 'a result = store -> 'a * store - type 'a result_exn = store -> 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val get : store m - val gets : (store -> 'a) -> 'a m - val put : store -> unit m - val puts : (store -> store) -> unit m + type ('x,'a) result = store -> 'a * store + type ('x,'a) result_exn = store -> 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val get : ('x,store) m + val gets : (store -> 'a) -> ('x,'a) m + val put : store -> ('x,unit) m + val puts : (store -> store) -> ('x,unit) m (* StateT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = store -> ('a * store) Wrapped.result - type 'a result_exn = store -> 'a Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val elevate : 'a Wrapped.m -> 'a m - val get : store m - val gets : (store -> 'a) -> 'a m - val put : store -> unit m - val puts : (store -> store) -> unit m - end - (* StateT transformer when wrapped monad has plus, zero *) - module TP : functor (Wrapped : Monad.P) -> sig - include module type of T(Wrapped) - include Monad.PLUS with type 'a m := 'a m + type ('x,'a) result = store -> ('x,'a * store) Wrapped.result + type ('x,'a) result_exn = store -> ('x,'a) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val get : ('x,store) m + val gets : (store -> 'a) -> ('x,'a) m + val put : store -> ('x,unit) m + val puts : (store -> store) -> ('x,unit) m end end = struct type store = Store.store module Base = struct - type 'a m = store -> 'a * store + type ('x,'a) m = store -> 'a * store + type ('x,'a) result = store -> 'a * store + type ('x,'a) result_exn = store -> 'a let unit a = fun s -> (a, s) let bind u f = fun s -> let (a, s') = u s in let u' = f a in u' s' - type 'a result = store -> 'a * store let run u = fun s -> (u s) - type 'a result_exn = store -> 'a let run_exn u = fun s -> fst (u s) + let zero () = Util.undef + let plus u v = u end include Monad.Make(Base) let get = fun s -> (s, s) @@ -760,66 +613,55 @@ end = struct let put s = fun _ -> ((), s) let puts modifier = fun s -> ((), modifier s) module T(Wrapped : Monad.S) = struct - module Trans = struct + module BaseT = struct module Wrapped = Wrapped - type 'a m = store -> ('a * store) Wrapped.m + type ('x,'a) m = store -> ('x,'a * store) Wrapped.m + type ('x,'a) result = store -> ('x,'a * store) Wrapped.result + type ('x,'a) result_exn = store -> ('x,'a) Wrapped.result_exn let elevate w = fun s -> Wrapped.bind w (fun a -> Wrapped.unit (a, s)) let bind u f = fun s -> Wrapped.bind (u s) (fun (a, s') -> f a s') - type 'a result = store -> ('a * store) Wrapped.result let run u = fun s -> Wrapped.run (u s) - type 'a result_exn = store -> 'a Wrapped.result_exn let run_exn u = fun s -> let w = Wrapped.bind (u s) (fun (a,s) -> Wrapped.unit a) in Wrapped.run_exn w - end - include Monad.MakeT(Trans) - let get = fun s -> Wrapped.unit (s, s) - let gets viewer = fun s -> Wrapped.unit (viewer s, s) (* may fail *) - let put s = fun _ -> Wrapped.unit ((), s) - let puts modifier = fun s -> Wrapped.unit ((), modifier s) - end - module TP(Wrapped : Monad.P) = struct - module TransP = struct - include T(Wrapped) + (* satisfies Distrib *) let plus u v = fun s -> Wrapped.plus (u s) (v s) - let zero () = elevate (Wrapped.zero ()) + let zero () = fun s -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end + include Monad.MakeT(BaseT) + let get = fun s -> Wrapped.unit (s, s) let gets viewer = fun s -> try Wrapped.unit (viewer s, s) with Not_found -> Wrapped.zero () - include TransP - include (Monad.MakeDistrib(TransP) : Monad.PLUS with type 'a m := 'a m) + let put s = fun _ -> Wrapped.unit ((), s) + let puts modifier = fun s -> Wrapped.unit ((), modifier s) end end + (* State monad with different interface (structured store) *) module Ref_monad(V : sig type value end) : sig type ref type value = V.value - type 'a result = 'a - type 'a result_exn = 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val newref : value -> ref m - val deref : ref -> value m - val change : ref -> value -> unit m + type ('x,'a) result = 'a + type ('x,'a) result_exn = 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val newref : value -> ('x,ref) m + val deref : ref -> ('x,value) m + val change : ref -> value -> ('x,unit) m (* RefT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = 'a Wrapped.result - type 'a result_exn = 'a Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val elevate : 'a Wrapped.m -> 'a m - val newref : value -> ref m - val deref : ref -> value m - val change : ref -> value -> unit m - end - (* RefT transformer when wrapped monad has plus, zero *) - module TP : functor (Wrapped : Monad.P) -> sig - include module type of T(Wrapped) - include Monad.PLUS with type 'a m := 'a m + type ('x,'a) result = ('x,'a) Wrapped.result + type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val newref : value -> ('x,ref) m + val deref : ref -> ('x,value) m + val change : ref -> value -> ('x,unit) m end end = struct type ref = int @@ -834,49 +676,45 @@ end = struct let write (key : ref) (value : value) (d : dict) = { next = d.next; tree = D.add key value d.tree } module Base = struct - type 'a m = dict -> 'a * dict + type ('x,'a) m = dict -> 'a * dict + type ('x,'a) result = 'a + type ('x,'a) result_exn = 'a let unit a = fun s -> (a, s) let bind u f = fun s -> let (a, s') = u s in let u' = f a in u' s' - type 'a result = 'a let run u = fst (u empty) - type 'a result_exn = 'a let run_exn = run + let zero () = Util.undef + let plus u v = u end include Monad.Make(Base) let newref value = fun s -> alloc value s let deref key = fun s -> (read key s, s) (* shouldn't fail because key will have an abstract type, and we never garbage collect *) let change key value = fun s -> ((), write key value s) (* shouldn't allocate because key will have an abstract type *) module T(Wrapped : Monad.S) = struct - module Trans = struct + module BaseT = struct module Wrapped = Wrapped - type 'a m = dict -> ('a * dict) Wrapped.m + type ('x,'a) m = dict -> ('x,'a * dict) Wrapped.m + type ('x,'a) result = ('x,'a) Wrapped.result + type ('x,'a) result_exn = ('x,'a) Wrapped.result_exn let elevate w = fun s -> Wrapped.bind w (fun a -> Wrapped.unit (a, s)) let bind u f = fun s -> Wrapped.bind (u s) (fun (a, s') -> f a s') - type 'a result = 'a Wrapped.result let run u = let w = Wrapped.bind (u empty) (fun (a,s) -> Wrapped.unit a) in Wrapped.run w - type 'a result_exn = 'a Wrapped.result_exn let run_exn u = let w = Wrapped.bind (u empty) (fun (a,s) -> Wrapped.unit a) in Wrapped.run_exn w + (* satisfies Distrib *) + let plus u v = fun s -> Wrapped.plus (u s) (v s) + let zero () = fun s -> Wrapped.zero () (* elevate (Wrapped.zero ()) *) end - include Monad.MakeT(Trans) + include Monad.MakeT(BaseT) let newref value = fun s -> Wrapped.unit (alloc value s) let deref key = fun s -> Wrapped.unit (read key s, s) let change key value = fun s -> Wrapped.unit ((), write key value s) end - module TP(Wrapped : Monad.P) = struct - module TransP = struct - include T(Wrapped) - let plus u v = fun s -> Wrapped.plus (u s) (v s) - let zero () = elevate (Wrapped.zero ()) - end - include TransP - include (Monad.MakeDistrib(TransP) : Monad.PLUS with type 'a m := 'a m) - end end @@ -888,24 +726,37 @@ module Writer_monad(Log : sig end) : sig (* declare additional operations, while still hiding implementation of type m *) type log = Log.log - type 'a result = 'a * log - type 'a result_exn = 'a * log - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val tell : log -> unit m - val listen : 'a m -> ('a * log) m - val listens : (log -> 'b) -> 'a m -> ('a * 'b) m - (* val pass : ('a * (log -> log)) m -> 'a m *) - val censor : (log -> log) -> 'a m -> 'a m + type ('x,'a) result = 'a * log + type ('x,'a) result_exn = 'a * log + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val tell : log -> ('x,unit) m + val listen : ('x,'a) m -> ('x,'a * log) m + val listens : (log -> 'b) -> ('x,'a) m -> ('x,'a * 'b) m + (* val pass : ('x,'a * (log -> log)) m -> ('x,'a) m *) + val censor : (log -> log) -> ('x,'a) m -> ('x,'a) m + (* WriterT transformer *) + module T : functor (Wrapped : Monad.S) -> sig + type ('x,'a) result = ('x,'a * log) Wrapped.result + type ('x,'a) result_exn = ('x,'a * log) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val tell : log -> ('x,unit) m + val listen : ('x,'a) m -> ('x,'a * log) m + val listens : (log -> 'b) -> ('x,'a) m -> ('x,'a * 'b) m + val censor : (log -> log) -> ('x,'a) m -> ('x,'a) m + end end = struct type log = Log.log module Base = struct - type 'a m = 'a * log + type ('x,'a) m = 'a * log + type ('x,'a) result = 'a * log + type ('x,'a) result_exn = 'a * log let unit a = (a, Log.zero) - let bind (a, w) f = let (a', w') = f a in (a', Log.plus w w') - type 'a result = 'a * log + let bind (a, w) f = let (b, w') = f a in (b, Log.plus w w') let run u = u - type 'a result_exn = 'a * log let run_exn = run + let zero () = Util.undef + let plus u v = u end include Monad.Make(Base) let tell entries = ((), entries) (* add entries to log *) @@ -913,6 +764,31 @@ end = struct let listens selector u = listen u >>= fun (a, w) -> unit (a, selector w) (* filter listen through selector *) let pass ((a, f), w) = (a, f w) (* usually use censor helper *) let censor f u = pass (u >>= fun a -> unit (a, f)) + module T(Wrapped : Monad.S) = struct + module BaseT = struct + module Wrapped = Wrapped + type ('x,'a) m = ('x,'a * log) Wrapped.m + type ('x,'a) result = ('x,'a * log) Wrapped.result + type ('x,'a) result_exn = ('x,'a * log) Wrapped.result_exn + let elevate w = + Wrapped.bind w (fun a -> Wrapped.unit (a, Log.zero)) + let bind u f = + Wrapped.bind u (fun (a, w) -> + Wrapped.bind (f a) (fun (b, w') -> + Wrapped.unit (b, Log.plus w w'))) + let zero () = elevate (Wrapped.zero ()) + let plus u v = Wrapped.plus u v + let run u = Wrapped.run u + let run_exn u = Wrapped.run_exn u + end + include Monad.MakeT(BaseT) + let tell entries = Wrapped.unit ((), entries) + let listen u = Wrapped.bind u (fun (a, w) -> Wrapped.unit ((a, w), w)) + let pass u = Wrapped.bind u (fun ((a, f), w) -> Wrapped.unit (a, f w)) + (* rest are derived in same way as before *) + let listens selector u = listen u >>= fun (a, w) -> unit (a, selector w) + let censor f u = pass (u >>= fun a -> unit (a, f)) + end end (* pre-define simple Writer *) @@ -936,27 +812,30 @@ module Writer2 = struct end +(* TODO needs a T *) module IO_monad : sig (* declare additional operation, while still hiding implementation of type m *) - type 'a result = 'a - type 'a result_exn = 'a - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - val printf : ('a, unit, string, unit m) format4 -> 'a - val print_string : string -> unit m - val print_int : int -> unit m - val print_hex : int -> unit m - val print_bool : bool -> unit m + type ('x,'a) result = 'a + type ('x,'a) result_exn = 'a + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val printf : ('a, unit, string, ('x,unit) m) format4 -> 'a + val print_string : string -> ('x,unit) m + val print_int : int -> ('x,unit) m + val print_hex : int -> ('x,unit) m + val print_bool : bool -> ('x,unit) m end = struct module Base = struct - type 'a m = { run : unit -> unit; value : 'a } + type ('x,'a) m = { run : unit -> unit; value : 'a } + type ('x,'a) result = 'a + type ('x,'a) result_exn = 'a let unit a = { run = (fun () -> ()); value = a } - let bind (a : 'a m) (f: 'a -> 'b m) : 'b m = + let bind (a : ('x,'a) m) (f: 'a -> ('x,'b) m) : ('x,'b) m = let fres = f a.value in { run = (fun () -> a.run (); fres.run ()); value = fres.value } - type 'a result = 'a let run a = let () = a.run () in a.value - type 'a result_exn = 'a let run_exn = run + let zero () = Util.undef + let plus u v = u end include Monad.Make(Base) let printf fmt = @@ -967,108 +846,86 @@ end = struct let print_bool b = { Base.run = (fun () -> Printf.printf "%B\n" b); value = () } end -module Continuation_monad : sig - (* expose only the implementation of type `('r,'a) result` *) - type 'a m - type 'a result = 'a m - type 'a result_exn = 'a m - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn and type 'a m := 'a m - (* val callcc : (('a -> ('r,'b) m) -> ('r,'a) m) -> ('r,'a) m *) - (* misses that the answer types of all the cont's must be the same *) - val callcc : (('a -> 'b m) -> 'a m) -> 'a m - (* val reset : ('a,'a) m -> ('r,'a) m *) - val reset : 'a m -> 'a m - (* val shift : (('a -> ('q,'r) m) -> ('r,'r) m) -> ('r,'a) m *) - (* misses that the answer types of second and third continuations must be b *) - val shift : (('a -> 'b m) -> 'b m) -> 'a m - (* overwrite the run declaration in S, because I can't declare 'a result = - * this polymorphic type (complains that 'r is unbound *) - val runk : 'a m -> ('a -> 'r) -> 'r - val run0 : 'a m -> 'a -end = struct - let id = fun i -> i - module Base = struct - (* 'r is result type of whole computation *) - type 'a m = { cont : 'r. ('a -> 'r) -> 'r } - let unit a = - let cont : 'r. ('a -> 'r) -> 'r = - fun k -> k a - in { cont } - let bind u f = - let cont : 'r. ('a -> 'r) -> 'r = - fun k -> u.cont (fun a -> (f a).cont k) - in { cont } - type 'a result = 'a m - let run (u : 'a m) : 'a result = u - type 'a result_exn = 'a m - let run_exn (u : 'a m) : 'a result_exn = u - let callcc f = - let cont : 'r. ('a -> 'r) -> 'r = - (* Can't figure out how to make the type polymorphic enough - * to satisfy the OCaml type-checker (it's ('a -> 'r) -> 'r - * instead of 'r. ('a -> 'r) -> 'r); so we have to fudge - * with Obj.magic... which tells OCaml's type checker to - * relax, the supplied value has whatever type the context - * needs it to have. *) - fun k -> - let usek a = { cont = Obj.magic (fun _ -> k a) } - in (f usek).cont k - in { cont } - let reset u = unit (u.cont id) - let shift (f : ('a -> 'b m) -> 'b m) : 'a m = - let cont = fun k -> - (f (fun a -> unit (k a))).cont id - in { cont = Obj.magic cont } - let runk u k = (u.cont : ('a -> 'r) -> 'r) k - let run0 u = runk u id - end - include Monad.Make(Base) - let callcc = Base.callcc - let reset = Base.reset - let shift = Base.shift - let runk = Base.runk - let run0 = Base.run0 -end - -(* -(* This two-type parameter version works without Obj.magic *) -module Continuation_monad2 : sig +module Continuation_monad : sig (* expose only the implementation of type `('r,'a) result` *) - type ('r,'a) result = ('a -> 'r) -> 'r + type ('r,'a) m + type ('r,'a) result = ('r,'a) m type ('r,'a) result_exn = ('a -> 'r) -> 'r - include Monad.S2 with type ('r,'a) result := ('r,'a) result and type ('r,'a) result_exn := ('r,'a) result_exn + include Monad.S with type ('r,'a) result := ('r,'a) result and type ('r,'a) result_exn := ('r,'a) result_exn and type ('r,'a) m := ('r,'a) m val callcc : (('a -> ('r,'b) m) -> ('r,'a) m) -> ('r,'a) m val reset : ('a,'a) m -> ('r,'a) m val shift : (('a -> ('q,'r) m) -> ('r,'r) m) -> ('r,'a) m - + (* val abort : ('a,'a) m -> ('a,'b) m *) + val abort : 'a -> ('a,'b) m + val run0 : ('a,'a) m -> 'a + (* ContinuationT transformer *) + module T : functor (Wrapped : Monad.S) -> sig + type ('r,'a) m + type ('r,'a) result = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result + type ('r,'a) result_exn = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result_exn + include Monad.S with type ('r,'a) result := ('r,'a) result and type ('r,'a) result_exn := ('r,'a) result_exn and type ('r,'a) m := ('r,'a) m + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m + val callcc : (('a -> ('r,'b) m) -> ('r,'a) m) -> ('r,'a) m + (* TODO: reset,shift,abort,run0 *) + end end = struct let id = fun i -> i module Base = struct (* 'r is result type of whole computation *) type ('r,'a) m = ('a -> 'r) -> 'r - let unit a = fun k -> k a - let bind u f = fun k -> u (fun a -> (f a) k) type ('r,'a) result = ('a -> 'r) -> 'r - let run u = u - type ('r,'a) result_exn = ('a -> 'r) -> 'r + type ('r,'a) result_exn = ('r,'a) result + let unit a = (fun k -> k a) + let bind u f = (fun k -> (u) (fun a -> (f a) k)) + let run u k = (u) k let run_exn = run + let zero () = Util.undef + let plus u v = u end - include Monad.Make2(Base) - let callcc f = fun k -> - let usek a = fun _ -> k a - in f usek k + include Monad.Make(Base) + let callcc f = (fun k -> + let usek a = (fun _ -> k a) + in (f usek) k) (* val callcc : (('a -> 'r) -> ('r,'a) m) -> ('r,'a) m val throw : ('a -> 'r) -> 'a -> ('r,'b) m let callcc f = fun k -> f k k let throw k a = fun _ -> k a *) - (* from http://www.haskell.org/haskellwiki/MonadCont_done_right *) - let reset u = unit (u id) - let shift u = fun k -> u (fun a -> unit (k a)) id + + (* from http://www.haskell.org/haskellwiki/MonadCont_done_right + * + * reset :: (Monad m) => ContT a m a -> ContT r m a + * reset e = ContT $ \k -> runContT e return >>= k + * + * shift :: (Monad m) => ((a -> ContT r m b) -> ContT b m b) -> ContT b m a + * shift e = ContT $ \k -> + * runContT (e $ \v -> ContT $ \c -> k v >>= c) return *) + let reset u = unit ((u) id) + let shift f = (fun k -> (f (fun a -> unit (k a))) id) + (* let abort a = shift (fun _ -> a) *) + let abort a = shift (fun _ -> unit a) + let run0 (u : ('a,'a) m) = (u) id + module T(Wrapped : Monad.S) = struct + module BaseT = struct + module Wrapped = Wrapped + type ('r,'a) m = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.m + type ('r,'a) result = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result + type ('r,'a) result_exn = ('a -> ('r,'r) Wrapped.m) -> ('r,'r) Wrapped.result_exn + let elevate w = fun k -> Wrapped.bind w k + let bind u f = fun k -> u (fun a -> f a k) + let run u k = Wrapped.run (u k) + let run_exn u k = Wrapped.run_exn (u k) + let zero () = Util.undef + let plus u v = u + end + include Monad.MakeT(BaseT) + let callcc f = (fun k -> + let usek a = (fun _ -> k a) + in (f usek) k) + end end - *) (* @@ -1092,63 +949,25 @@ end * >>= fun x -> unit (x, 0) * in run u) * - * - * (* (+ 1000 (prompt (+ 100 (shift k (+ 10 1))))) ~~> 1011 *) - * let example1 () : int = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> unit (10 + 1)) - * in u >>= fun x -> unit (100 + x) - * ) in let w = v >>= fun x -> unit (1000 + x) - * in run w) - * - * (* (+ 1000 (prompt (+ 100 (shift k (k (+ 10 1)))))) ~~> 1111 *) - * let example2 () = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> k (10 :: [1])) - * in u >>= fun x -> unit (100 :: x) - * ) in let w = v >>= fun x -> unit (1000 :: x) - * in run w) - * - * (* (+ 1000 (prompt (+ 100 (shift k (+ 10 (k 1)))))) ~~> 1111 but added differently *) - * let example3 () = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> k [1] >>= fun x -> unit (10 :: x)) - * in u >>= fun x -> unit (100 :: x) - * ) in let w = v >>= fun x -> unit (1000 :: x) - * in run w) - * - * (* (+ 100 ((prompt (+ 10 (shift k k))) 1)) ~~> 111 *) - * (* not sure if this example can be typed without a sum-type *) - * - * (* (+ 100 (prompt (+ 10 (shift k (k (k 1)))))) ~~> 121 *) - * let example5 () : int = - * Continuation_monad.(let v = reset ( - * let u = shift (fun k -> k 1 >>= fun x -> k x) - * in u >>= fun x -> unit (10 + x) - * ) in let w = v >>= fun x -> unit (100 + x) - * in run w) - * *) -module Leaf_monad : sig +module Tree_monad : sig (* We implement the type as `'a tree option` because it has a natural`plus`, * and the rest of the library expects that `plus` and `zero` will come together. *) type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree) - type 'a result = 'a tree option - type 'a result_exn = 'a tree - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - include Monad.PLUS with type 'a m := 'a m - (* LeafT transformer *) + type ('x,'a) result = 'a tree option + type ('x,'a) result_exn = 'a tree + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + (* TreeT transformer *) module T : functor (Wrapped : Monad.S) -> sig - type 'a result = 'a tree option Wrapped.result - type 'a result_exn = 'a tree Wrapped.result_exn - include Monad.S with type 'a result := 'a result and type 'a result_exn := 'a result_exn - include Monad.PLUS with type 'a m := 'a m - val elevate : 'a Wrapped.m -> 'a m + type ('x,'a) result = ('x,'a tree option) Wrapped.result + type ('x,'a) result_exn = ('x,'a tree) Wrapped.result_exn + include Monad.S with type ('x,'a) result := ('x,'a) result and type ('x,'a) result_exn := ('x,'a) result_exn + val elevate : ('x,'a) Wrapped.m -> ('x,'a) m (* note that second argument is an 'a tree?, not the more abstract 'a m *) (* type is ('a -> 'b W) -> 'a tree? -> 'b tree? W == 'b treeT(W) *) - val distribute : ('a -> 'b Wrapped.m) -> 'a tree option -> 'b m + val distribute : ('a -> ('x,'b) Wrapped.m) -> 'a tree option -> ('x,'b) m end end = struct type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree) @@ -1162,17 +981,18 @@ end = struct plus (loop l) (loop r) ) in loop ts module Base = struct - type 'a m = 'a tree option + type ('x,'a) m = 'a tree option + type ('x,'a) result = 'a tree option + type ('x,'a) result_exn = 'a tree let unit a = Some (Leaf a) let zero () = None + (* satisfies Distrib *) let plus u v = match (u, v) with | None, _ -> v | _, None -> u | Some us, Some vs -> Some (Node (us, vs)) let bind u f = mapT f u zero plus - type 'a result = 'a tree option let run u = u - type 'a result_exn = 'a tree let run_exn u = match u with | None -> failwith "no values" (* @@ -1182,220 +1002,31 @@ end = struct | Some us -> us end include Monad.Make(Base) - include (Monad.MakeDistrib(Base) : Monad.PLUS with type 'a m := 'a m) - let base_plus = plus - let base_lift = lift module T(Wrapped : Monad.S) = struct - module Trans = struct - let zero () = Wrapped.unit None - let plus u v = - Wrapped.bind u (fun us -> - Wrapped.bind v (fun vs -> - Wrapped.unit (base_plus us vs))) + module BaseT = struct include Monad.MakeT(struct module Wrapped = Wrapped - type 'a m = 'a Base.m Wrapped.m + type ('x,'a) m = ('x,'a tree option) Wrapped.m + type ('x,'a) result = ('x,'a tree option) Wrapped.result + type ('x,'a) result_exn = ('x,'a tree) Wrapped.result_exn + let zero () = Wrapped.unit None + let plus u v = + Wrapped.bind u (fun us -> + Wrapped.bind v (fun vs -> + Wrapped.unit (Base.plus us vs))) let elevate w = Wrapped.bind w (fun a -> Wrapped.unit (Some (Leaf a))) let bind u f = Wrapped.bind u (fun t -> mapT f t zero plus) - type 'a result = 'a tree option Wrapped.result let run u = Wrapped.run u - type 'a result_exn = 'a tree Wrapped.result_exn let run_exn u = let w = Wrapped.bind u (fun t -> match t with - | None -> failwith "no values" - | Some ts -> Wrapped.unit ts) - in Wrapped.run_exn w + | None -> Wrapped.zero () + | Some ts -> Wrapped.unit ts + ) in Wrapped.run_exn w end) end - include Trans - include (Monad.MakeDistrib(Trans) : Monad.PLUS with type 'a m := 'a m) - (* let distribute f t = mapT (fun a -> a) (base_lift (fun a -> elevate (f a)) t) zero plus *) + include BaseT let distribute f t = mapT (fun a -> elevate (f a)) t zero plus end -end - - -module L = List_monad;; -module R = Reader_monad(struct type env = int -> int end);; -module S = State_monad(struct type store = int end);; -module T = Leaf_monad;; -module LR = L.T(R);; -module LS = L.T(S);; -module TL = T.T(L);; -module TR = T.T(R);; -module TS = T.T(S);; - -let t1 = Some (T.Node (T.Node (T.Leaf 2, T.Leaf 3), T.Node (T.Leaf 5, T.Node (T.Leaf 7, T.Leaf 11))));; - -(* -let ts = TS.distribute (fun i -> S.(puts succ >> unit i)) t1;; -TS.run ts 0;; -(* -- : int T.tree option * S.store = -(Some - (T.Node - (T.Node (T.Leaf 2, T.Leaf 3), - T.Node (T.Leaf 5, T.Node (T.Leaf 7, T.Leaf 11)))), - 5) -*) - -let ts2 = TS.distribute (fun i -> S.(puts succ >> get >>= fun n -> unit (i,n))) t1;; -TS.run_exn ts2 0;; -(* -- : (int * S.store) T.tree option * S.store = -(Some - (T.Node - (T.Node (T.Leaf (2, 1), T.Leaf (3, 2)), - T.Node (T.Leaf (5, 3), T.Node (T.Leaf (7, 4), T.Leaf (11, 5))))), - 5) -*) - -let tr = TR.distribute (fun i -> R.asks (fun e -> e i)) t1;; -TR.run_exn tr (fun i -> i+i);; -(* -- : int T.tree option = -Some - (T.Node - (T.Node (T.Leaf 4, T.Leaf 6), - T.Node (T.Leaf 10, T.Node (T.Leaf 14, T.Leaf 22)))) -*) - -let tl = TL.distribute (fun i -> L.(unit (i,i+1))) t1;; -TL.run_exn tl;; -(* -- : (int * int) TL.result = -[Some - (T.Node - (T.Node (T.Leaf (2, 3), T.Leaf (3, 4)), - T.Node (T.Leaf (5, 6), T.Node (T.Leaf (7, 8), T.Leaf (11, 12)))))] -*) - -let l2 = [1;2;3;4;5];; -let t2 = Some (T.Node (T.Leaf 1, (T.Node (T.Node (T.Node (T.Leaf 2, T.Leaf 3), T.Leaf 4), T.Leaf 5))));; - -LR.(run (distribute (fun i -> R.(asks (fun e -> e i))) l2 >>= fun j -> LR.(plus (unit j) (unit (succ j))))) (fun i -> i*10);; -(* int list = [10; 11; 20; 21; 30; 31; 40; 41; 50; 51] *) - -TR.(run_exn (distribute (fun i -> R.(asks (fun e -> e i))) t2 >>= fun j -> TR.(plus (unit j) (unit (succ j))))) (fun i -> i*10);; -(* -int T.tree option = -Some - (T.Node - (T.Node (T.Leaf 10, T.Leaf 11), - T.Node - (T.Node - (T.Node (T.Node (T.Leaf 20, T.Leaf 21), T.Node (T.Leaf 30, T.Leaf 31)), - T.Node (T.Leaf 40, T.Leaf 41)), - T.Node (T.Leaf 50, T.Leaf 51)))) - *) - -LS.run (LS.distribute (fun i -> if i = -1 then S.get else if i < 0 then S.(puts succ >> unit 0) else S.unit i) [10;-1;-2;-1;20]) 0;; -(* -- : S.store list * S.store = ([10; 0; 0; 1; 20], 1) -*) - -*) - -let id : 'z. 'z -> 'z = fun x -> x - -let example n : (int * int) = - Continuation_monad.(let u = callcc (fun k -> - (if n < 0 then k 0 else unit [n + 100]) - (* all of the following is skipped by k 0; the end type int is k's input type *) - >>= fun [x] -> unit (x + 1) - ) - (* k 0 starts again here, outside the callcc (...); the end type int * int is k's output type *) - >>= fun x -> unit (x, 0) - in run0 u) - - -(* (+ 1000 (prompt (+ 100 (shift k (+ 10 1))))) ~~> 1011 *) -let example1 () : int = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> unit (10 + 1)) - in u >>= fun x -> unit (100 + x) - ) in let w = v >>= fun x -> unit (1000 + x) - in run0 w) - -(* (+ 1000 (prompt (+ 100 (shift k (k (+ 10 1)))))) ~~> 1111 *) -let example2 () = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> k (10 :: [1])) - in u >>= fun x -> unit (100 :: x) - ) in let w = v >>= fun x -> unit (1000 :: x) - in run0 w) - -(* (+ 1000 (prompt (+ 100 (shift k (+ 10 (k 1)))))) ~~> 1111 but added differently *) -let example3 () = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> k [1] >>= fun x -> unit (10 :: x)) - in u >>= fun x -> unit (100 :: x) - ) in let w = v >>= fun x -> unit (1000 :: x) - in run0 w) - -(* (+ 100 ((prompt (+ 10 (shift k k))) 1)) ~~> 111 *) -(* not sure if this example can be typed without a sum-type *) - -(* (+ 100 (prompt (+ 10 (shift k (k (k 1)))))) ~~> 121 *) -let example5 () : int = - Continuation_monad.(let v = reset ( - let u = shift (fun k -> k 1 >>= fun x -> k x) - in u >>= fun x -> unit (10 + x) - ) in let w = v >>= fun x -> unit (100 + x) - in run0 w) - - -;; - -(1011, 1111, 1111, 121);; -(example1(), example2(), example3(), example5());; -((111,0), (0,0));; -(example ~+10, example ~-10);; - -module C = Continuation_monad -module TC = T.T(C) - -let testc df ic = - C.runk TC.(run_exn (distribute df t1)) ic;; - - -(* -(* do nothing *) -let initial_continuation = fun t -> t in -TreeCont.monadize t1 Continuation_monad.unit initial_continuation;; -*) -testc (C.unit) id;; - -(* -(* count leaves, using continuation *) -let initial_continuation = fun t -> 0 in -TreeCont.monadize t1 (fun a k -> 1 + k a) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k a >>= fun v -> unit (1 + v))) (fun t -> 0);; - -(* -(* convert tree to list of leaves *) -let initial_continuation = fun t -> [] in -TreeCont.monadize t1 (fun a k -> a :: k a) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k a >>= fun v -> unit (a::v))) (fun t -> ([] : int list));; - -(* -(* square each leaf using continuation *) -let initial_continuation = fun t -> t in -TreeCont.monadize t1 (fun a k -> k (a*a)) initial_continuation;; -*) - -testc C.(fun a -> shift (fun k -> k (a*a))) (fun t -> t);; - - -(* -(* replace leaves with list, using continuation *) -let initial_continuation = fun t -> t in -TreeCont.monadize t1 (fun a k -> k [a; a*a]) initial_continuation;; -*) +end;; -testc C.(fun a -> shift (fun k -> k (a,a+1))) (fun t -> t);;