X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=assignment5.mdwn;h=f6ae94b006b4f2a2076fa3a1a90eb307da302c77;hp=43c3ef55fe6ecc8ad477c32c0ab670268ff7cb6f;hb=48f733f96a60560cc42360cbfc890f6f9c529d91;hpb=e519121696a33c116b0942cb289e74d4d978b80c diff --git a/assignment5.mdwn b/assignment5.mdwn index 43c3ef55..f6ae94b0 100644 --- a/assignment5.mdwn +++ b/assignment5.mdwn @@ -8,7 +8,7 @@ Types and OCAML To get you started, here's one typing for K: # let k (y:'a) (n:'b) = y;; - val k : 'a -> 'b -> 'a = + val k : 'a -> 'b -> 'a = [fun] # k 1 true;; - : int = 1 @@ -68,7 +68,8 @@ Types and OCAML let _ = omega () in 2;; -3. The following expression is an attempt to make explicit the +3. This problem is to begin thinking about controlling order of evaluation. +The following expression is an attempt to make explicit the behavior of `if`-`then`-`else` explored in the previous question. The idea is to define an `if`-`then`-`else` expression using other expression types. So assume that "yes" is any OCAML expression, @@ -122,7 +123,10 @@ you're allowed to adjust what `b`, `y`, and `n` get assigned to. [[Hint assignment 5 problem 3]] -4. Baby monads. Read the lecture notes for week 6, then write a +Baby monads +----------- + + Read the lecture notes for week 6, then write a function `lift` that generalized the correspondence between + and `add`: that is, `lift` takes any two-place operation on integers and returns a version that takes arguments of type `int option` @@ -138,3 +142,74 @@ you're allowed to adjust what `b`, `y`, and `n` get assigned to. let bind (x: int option) (f: int -> (int option)) = match x with None -> None | Some n -> f n;; + +Booleans, Church numbers, and Church lists in OCAML +--------------------------------------------------- + +These questions adapted from web materials written by some smart dude named Acar. +The idea is to get booleans, Church numbers, "Church" lists, and +binary trees working in OCAML. + + Recall from class System F, or the polymorphic λ-calculus. + + τ ::= α | τ1 → τ2 | ∀α. τ + e ::= x | λx:τ. e | e1 e2 | Λα. e | e [τ ] + + Recall that bool may be encoded as follows: + + bool := ∀α. α → α → α + true := Λα. λt:α. λf :α. t + false := Λα. λt:α. λf :α. f + + (where τ indicates the type of e1 and e2) + + Note that each of the following terms, when applied to the + appropriate arguments, return a result of type bool. + + (a) the term not that takes an argument of type bool and computes its negation; + (b) the term and that takes two arguments of type bool and computes their conjunction; + (c) the term or that takes two arguments of type bool and computes their disjunction. + + The type nat (for "natural number") may be encoded as follows: + + nat := ∀α. α → (α → α) → α + zero := Λα. λz:α. λs:α → α. z + succ := λn:nat. Λα. λz:α. λs:α → α. s (n [α] z s) + + A nat n is defined by what it can do, which is to compute a function iterated n times. In the polymorphic + encoding above, the result of that iteration can be any type α, as long as you have a base element z : α and + a function s : α → α. + + **Excercise**: get booleans and Church numbers working in OCAML, + including OCAML versions of bool, true, false, zero, succ, add. + + Consider the following list type: + + datatype ’a list = Nil | Cons of ’a * ’a list + + We can encode τ lists, lists of elements of type τ as follows: + + τ list := ∀α. α → (τ → α → α) → α + nilτ := Λα. λn:α. λc:τ → α → α. n + makeListτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) + + As with nats, recursion is built into the datatype. + + We can write functions like map: + + map : (σ → τ ) → σ list → τ list + := λf :σ → τ. λl:σ list. l [τ list] nilτ (λx:σ. λy:τ list. consτ (f x) y + + **Excercise** convert this function to OCAML. Also write an `append` function. + Test with simple lists. + + Consider the following simple binary tree type: + + type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree + + **Excercise** + Write a function `sumLeaves` that computes the sum of all the + leaves in an int tree. + + Write a function `inOrder` : τ tree → τ list that computes the in-order traversal of a binary tree. You + may assume the above encoding of lists; define any auxiliary functions you need.