X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=assignment5.mdwn;h=f402ec61a70bbe9ebe4e5f7c2f4a2f1ecc853ede;hp=2078c1c094b59441c69a357729ee8fc505ca3fe0;hb=109034aa514a67fcaed0607b4deb4b339f67ab76;hpb=c45c91f3f0a5e1e1a4098d8fb610d55ea0611977
diff --git a/assignment5.mdwn b/assignment5.mdwn
index 2078c1c0..f402ec61 100644
--- a/assignment5.mdwn
+++ b/assignment5.mdwn
@@ -3,213 +3,250 @@ Assignment 5
Types and OCaml
---------------
-0. Recall that the S combinator is given by \x y z. x z (y z).
- Give two different typings for this function in OCaml.
- To get you started, here's one typing for K:
+0. Recall that the S combinator is given by \x y z. x z (y z).
+ Give two different typings for this function in OCaml.
+ To get you started, here's one typing for K:
- # let k (y:'a) (n:'b) = y;;
- val k : 'a -> 'b -> 'a = [fun]
- # k 1 true;;
- - : int = 1
+ # let k (y:'a) (n:'b) = y;;
+ val k : 'a -> 'b -> 'a = [fun]
+ # k 1 true;;
+ - : int = 1
-1. Which of the following expressions is well-typed in OCaml?
- For those that are, give the type of the expression as a whole.
- For those that are not, why not?
+1. Which of the following expressions is well-typed in OCaml? For those that
+ are, give the type of the expression as a whole. For those that are not, why
+ not?
- let rec f x = f x;;
+ let rec f x = f x;;
- let rec f x = f f;;
+ let rec f x = f f;;
- let rec f x = f x in f f;;
+ let rec f x = f x in f f;;
- let rec f x = f x in f ();;
+ let rec f x = f x in f ();;
- let rec f () = f f;;
+ let rec f () = f f;;
- let rec f () = f ();;
+ let rec f () = f ();;
- let rec f () = f () in f f;;
+ let rec f () = f () in f f;;
- let rec f () = f () in f ();;
+ let rec f () = f () in f ();;
-2. Throughout this problem, assume that we have
+2. Throughout this problem, assume that we have
- let rec omega x = omega x;;
+ let rec blackhole x = blackhole x;;
- All of the following are well-typed.
- Which ones terminate? What are the generalizations?
+ All of the following are well-typed.
+ Which ones terminate? What are the generalizations?
- omega;;
+ blackhole;;
- omega ();;
+ blackhole ();;
- fun () -> omega ();;
+ fun () -> blackhole ();;
- (fun () -> omega ()) ();;
+ (fun () -> blackhole ()) ();;
- if true then omega else omega;;
+ if true then blackhole else blackhole;;
- if false then omega else omega;;
+ if false then blackhole else blackhole;;
- if true then omega else omega ();;
+ if true then blackhole else blackhole ();;
- if false then omega else omega ();;
+ if false then blackhole else blackhole ();;
- if true then omega () else omega;;
+ if true then blackhole () else blackhole;;
- if false then omega () else omega;;
+ if false then blackhole () else blackhole;;
- if true then omega () else omega ();;
+ if true then blackhole () else blackhole ();;
- if false then omega () else omega ();;
+ if false then blackhole () else blackhole ();;
- let _ = omega in 2;;
+ let _ = blackhole in 2;;
- let _ = omega () in 2;;
+ let _ = blackhole () in 2;;
-3. This problem is to begin thinking about controlling order of evaluation.
+3. This problem is to begin thinking about controlling order of evaluation.
The following expression is an attempt to make explicit the
behavior of `if`-`then`-`else` explored in the previous question.
-The idea is to define an `if`-`then`-`else` expression using
+The idea is to define an `if`-`then`-`else` expression using
other expression types. So assume that "yes" is any OCaml expression,
and "no" is any other OCaml expression (of the same type as "yes"!),
and that "bool" is any boolean. Then we can try the following:
"if bool then yes else no" should be equivalent to
- let b = bool in
- let y = yes in
- let n = no in
- match b with true -> y | false -> n
+ let b = bool in
+ let y = yes in
+ let n = no in
+ match b with true -> y | false -> n
-This almost works. For instance,
+ This almost works. For instance,
- if true then 1 else 2;;
+ if true then 1 else 2;;
-evaluates to 1, and
+ evaluates to 1, and
- let b = true in let y = 1 in let n = 2 in
- match b with true -> y | false -> n;;
+ let b = true in let y = 1 in let n = 2 in
+ match b with true -> y | false -> n;;
-also evaluates to 1. Likewise,
+ also evaluates to 1. Likewise,
- if false then 1 else 2;;
+ if false then 1 else 2;;
-and
+ and
- let b = false in let y = 1 in let n = 2 in
- match b with true -> y | false -> n;;
+ let b = false in let y = 1 in let n = 2 in
+ match b with true -> y | false -> n;;
-both evaluate to 2.
+ both evaluate to 2.
-However,
+ However,
- let rec omega x = omega x in
- if true then omega else omega ();;
+ let rec blackhole x = blackhole x in
+ if true then blackhole else blackhole ();;
-terminates, but
+ terminates, but
- let rec omega x = omega x in
- let b = true in
- let y = omega in
- let n = omega () in
- match b with true -> y | false -> n;;
+ let rec blackhole x = blackhole x in
+ let b = true in
+ let y = blackhole in
+ let n = blackhole () in
+ match b with true -> y | false -> n;;
-does not terminate. Incidentally, `match bool with true -> yes |
-false -> no;;` works as desired, but your assignment is to solve it
-without using the magical evaluation order properties of either `if`
-or of `match`. That is, you must keep the `let` statements, though
-you're allowed to adjust what `b`, `y`, and `n` get assigned to.
+ does not terminate. Incidentally, `match bool with true -> yes |
+ false -> no;;` works as desired, but your assignment is to solve it
+ without using the magical evaluation order properties of either `if`
+ or of `match`. That is, you must keep the `let` statements, though
+ you're allowed to adjust what `b`, `y`, and `n` get assigned to.
-[[Hint assignment 5 problem 3]]
+ [[hints/assignment 5 hint 1]]
-Baby monads
------------
+Booleans, Church numerals, and v3 lists in OCaml
+------------------------------------------------
+
+(These questions adapted from web materials by Umut Acar. See
+.)
+
+Let's think about the encodings of booleans, numerals and lists in System F,
+and get data-structures with the same form working in OCaml. (Of course, OCaml
+has *native* versions of these datas-structures: its `true`, `1`, and `[1;2;3]`.
+But the point of our exercise requires that we ignore those.)
+
+Recall from class System F, or the polymorphic Î»-calculus.
+
+ types Ï ::= c | 'a | Ï1 â Ï2 | â'a. Ï
+ expressions e ::= x | Î»x:Ï. e | e1 e2 | Î'a. e | e [Ï]
+
+The boolean type, and its two values, may be encoded as follows:
+
+ bool := â'a. 'a â 'a â 'a
+ true := Î'a. Î»t:'a. Î»f :'a. t
+ false := Î'a. Î»t:'a. Î»f :'a. f
- Read the lecture notes for week 6, then write a
- function `lift` that generalized the correspondence between + and
- `add`: that is, `lift` takes any two-place operation on integers
- and returns a version that takes arguments of type `int option`
- instead, returning a result of `int option`. In other words,
- `lift` will have type
+It's used like this:
- (int -> int -> int) -> (int option) -> (int option) -> (int option)
+ b [Ï] e1 e2
- so that `lift (+) (Some 3) (Some 4)` will evalute to `Some 7`.
- Don't worry about why you need to put `+` inside of parentheses.
- You should make use of `bind` in your definition of `lift`:
+where b is a boolean value, and Ï is the shared type of e1 and e2.
- let bind (x: int option) (f: int -> (int option)) =
- match x with None -> None | Some n -> f n;;
+**Exercise**. How should we implement the following terms. Note that the result
+of applying them to the appropriate arguments should also give us a term of
+type bool.
+(a) the term not that takes an argument of type bool and computes its negation;
+(b) the term and that takes two arguments of type bool and computes their conjunction;
+(c) the term or that takes two arguments of type bool and computes their disjunction.
-Booleans, Church numbers, and Church lists in OCaml
----------------------------------------------------
-These questions adapted from web materials written by some smart dude named Acar.
-The idea is to get booleans, Church numbers, "Church" lists, and
-binary trees working in OCaml.
+The type nat (for "natural number") may be encoded as follows:
- Recall from class System F, or the polymorphic Î»-calculus.
+ nat := â'a. 'a â ('a â 'a) â 'a
+ zero := Î'a. Î»z:'a. Î»s:'a â 'a. z
+ succ := Î»n:nat. Î'a. Î»z:'a. Î»s:'a â 'a. s (n ['a] z s)
- ÏÂ ::=Â Î±Â |Â Ï1Â âÂ Ï2Â |Â âÎ±.Â Ï
- eÂ ::=Â xÂ |Â Î»x:Ï.Â eÂ |Â e1Â e2Â |Â ÎÎ±.Â eÂ |Â eÂ [ÏÂ ]
+A nat n is deï¬ned by what it can do, which is to compute a function iterated n
+times. In the polymorphic encoding above, the result of that iteration can be
+any type 'a, as long as you have a base element z : 'a and a function s : 'a â 'a.
- RecallÂ thatÂ boolÂ mayÂ beÂ encodedÂ asÂ follows:
+**Exercise**: get booleans and Church numbers working in OCaml,
+including OCaml versions of bool, true, false, zero, iszero, succ, and pred.
+It's especially useful to do a version of pred, starting with one
+of the (untyped) versions available in the lambda library
+accessible from the main wiki page. The point of the excercise
+is to do these things on your own, so avoid using the built-in
+OCaml booleans and integers.
- boolÂ :=Â âÎ±.Â Î±Â âÂ Î±Â âÂ Î±
- trueÂ :=Â ÎÎ±.Â Î»t:Î±.Â Î»fÂ :Î±.Â t
- falseÂ :=Â ÎÎ±.Â Î»t:Î±.Â Î»fÂ :Î±.Â f
+Consider the following list type:
- (whereÂ ÏÂ indicatesÂ theÂ typeÂ ofÂ e1Â andÂ e2)
+ type 'a list = Nil | Cons of 'a * 'a list
- NoteÂ thatÂ eachÂ ofÂ the followingÂ terms,Â whenÂ appliedÂ toÂ the
- appropriateÂ arguments,Â returnÂ aÂ resultÂ ofÂ typeÂ bool.
+We can encode Ï lists, lists of elements of type Ï as follows:
- (a)Â theÂ termÂ notÂ thatÂ takesÂ anÂ argumentÂ ofÂ typeÂ boolÂ andÂ computesÂ itsÂ negation;
- (b)Â theÂ termÂ andÂ thatÂ takesÂ twoÂ argumentsÂ ofÂ typeÂ boolÂ andÂ computesÂ theirÂ conjunction;
- (c)Â theÂ termÂ orÂ thatÂ takesÂ twoÂ argumentsÂ ofÂ typeÂ boolÂ andÂ computesÂ theirÂ disjunction.
+ Ï list := â'a. 'a â (Ï â 'a â 'a) â 'a
+ nil Ï := Î'a. Î»n:'a. Î»c:Ï â 'a â 'a. n
+ make_list Ï := Î»h:Ï. Î»t:Ï list. Î'a. Î»n:'a. Î»c:Ï â 'a â 'a. c h (t ['a] n c)
- TheÂ typeÂ nat (for "natural number") mayÂ beÂ encodedÂ asÂ follows:
+More generally, the polymorphic list type is:
- natÂ :=Â âÎ±.Â Î±Â âÂ (Î±Â âÂ Î±)Â âÂ Î±
- zeroÂ :=Â ÎÎ±.Â Î»z:Î±.Â Î»s:Î±Â âÂ Î±.Â z
- succÂ :=Â Î»n:nat.Â ÎÎ±.Â Î»z:Î±.Â Î»s:Î±Â âÂ Î±.Â sÂ (nÂ [Î±]Â zÂ s)
+ list := â'b. â'a. 'a â ('b â 'a â 'a) â 'a
- AÂ natÂ nÂ isÂ deï¬nedÂ byÂ whatÂ itÂ canÂ do,Â whichÂ isÂ toÂ computeÂ aÂ functionÂ iteratedÂ nÂ times.Â InÂ theÂ polymorphic
- encodingÂ above,Â theÂ resultÂ ofÂ thatÂ iterationÂ canÂ beÂ anyÂ typeÂ Î±,Â asÂ longÂ asÂ youÂ haveÂ aÂ baseÂ elementÂ zÂ :Â Î±Â and
- aÂ functionÂ sÂ :Â Î±Â âÂ Î±.
+As with nats, recursion is built into the datatype.
- **Excercise**: get booleans and Church numbers working in OCaml,
- including OCaml versions of bool, true, false, zero, succ, add.
+We can write functions like map:
- ConsiderÂ theÂ followingÂ listÂ type:
+ map : (Ï â Ï ) â Ï list â Ï list
- typeÂ âaÂ listÂ = Nil |Â ConsÂ ofÂ âaÂ *Â âaÂ list
+
- WeÂ canÂ encodeÂ ÏÂ lists,Â listsÂ ofÂ elementsÂ ofÂ typeÂ ÏÂ asÂ follows:
+**Excercise** convert this function to OCaml. We've given you the type; you
+only need to give the term.
- ÏÂ listÂ :=Â âÎ±.Â Î±Â âÂ (ÏÂ âÂ Î±Â âÂ Î±)Â âÂ Î±
- nilÏÂ :=Â ÎÎ±.Â Î»n:Î±.Â Î»c:ÏÂ âÂ Î±Â âÂ Î±.Â n
- makeListÏÂ :=Â Î»h:Ï.Â Î»t:ÏÂ list.Â ÎÎ±.Â Î»n:Î±.Â Î»c:ÏÂ âÂ Î±Â âÂ Î±.Â cÂ hÂ (tÂ [Î±]Â nÂ c)
+Also give us the type and definition for a `head` function. Think about what
+value to give back if the argument is the empty list. Ultimately, we might
+want to make use of our `'a option` technique, but for this assignment, just
+pick a strategy, no matter how clunky.
- AsÂ withÂ nats,Â recursion is built into the datatype.
+Be sure to test your proposals with simple lists. (You'll have to `make_list`
+the lists yourself; don't expect OCaml to magically translate between its
+native lists and the ones you buil.d)
- WeÂ canÂ writeÂ functions likeÂ map:
- mapÂ :Â (ÏÂ âÂ ÏÂ )Â âÂ ÏÂ listÂ âÂ ÏÂ list
- :=Â Î»fÂ :ÏÂ âÂ Ï.Â Î»l:ÏÂ list.Â lÂ [ÏÂ list]Â nilÏÂ (Î»x:Ï.Â Î»y:ÏÂ list.Â consÏÂ (fÂ x)Â y
+
+
+
+Baby monads
+-----------
+
+Read the material on dividing by zero/towards monads from ~~the end of lecture
+notes for week 6~~ the start of lecture notes for week 7, then write a function `lift'` that generalized the
+correspondence between + and `add'`: that is, `lift'` takes any two-place
+operation on integers and returns a version that takes arguments of type `int
+option` instead, returning a result of `int option`. In other words, `lift'`
+will have type:
- **Excercise** convert this function to OCaml. Also write an `append` function.
- Test with simple lists.
+ (int -> int -> int) -> (int option) -> (int option) -> (int option)
- ConsiderÂ theÂ followingÂ simpleÂ binaryÂ treeÂ type:
+so that `lift' (+) (Some 3) (Some 4)` will evalute to `Some 7`.
+Don't worry about why you need to put `+` inside of parentheses.
+You should make use of `bind'` in your definition of `lift'`:
- typeÂ âaÂ treeÂ = Leaf |Â NodeÂ ofÂ âaÂ treeÂ *Â âaÂ *Â âaÂ tree
+ let bind' (u: int option) (f: int -> (int option)) =
+ match u with None -> None | Some x -> f x;;
- **Excercise**
- Write a function `sumLeaves` that computes the sum of all the
- leaves in an int tree.
- WriteÂ aÂ functionÂ `inOrder`Â :Â ÏÂ treeÂ âÂ ÏÂ listÂ thatÂ computesÂ theÂ in-orderÂ traversalÂ ofÂ aÂ binaryÂ tree.Â You
- mayÂ assumeÂ theÂ aboveÂ encodingÂ ofÂ lists;Â deï¬neÂ anyÂ auxiliaryÂ functionsÂ youÂ need.