X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=assignment5.mdwn;h=cc714e90766536fcceb0927d297d276f923856c0;hp=cf8d1448c0568530ec87a8106392f5a1e4f18677;hb=ac6c32595e75ae0d3aa0631be7df6ca758626d56;hpb=5093b09aca00def779aedb2d2c7f1657aa7748e7 diff --git a/assignment5.mdwn b/assignment5.mdwn index cf8d1448..cc714e90 100644 --- a/assignment5.mdwn +++ b/assignment5.mdwn @@ -1,10 +1,10 @@ Assignment 5 -Types and OCAML +Types and OCaml --------------- 0. Recall that the S combinator is given by \x y z. x z (y z). - Give two different typings for this function in OCAML. + Give two different typings for this function in OCaml. To get you started, here's one typing for K: # let k (y:'a) (n:'b) = y;; @@ -13,7 +13,7 @@ Types and OCAML - : int = 1 -1. Which of the following expressions is well-typed in OCAML? +1. Which of the following expressions is well-typed in OCaml? For those that are, give the type of the expression as a whole. For those that are not, why not? @@ -68,11 +68,12 @@ Types and OCAML let _ = omega () in 2;; -3. The following expression is an attempt to make explicit the +3. This problem is to begin thinking about controlling order of evaluation. +The following expression is an attempt to make explicit the behavior of `if`-`then`-`else` explored in the previous question. The idea is to define an `if`-`then`-`else` expression using -other expression types. So assume that "yes" is any OCAML expression, -and "no" is any other OCAML expression (of the same type as "yes"!), +other expression types. So assume that "yes" is any OCaml expression, +and "no" is any other OCaml expression (of the same type as "yes"!), and that "bool" is any boolean. Then we can try the following: "if bool then yes else no" should be equivalent to @@ -122,7 +123,10 @@ you're allowed to adjust what `b`, `y`, and `n` get assigned to. [[Hint assignment 5 problem 3]] -4. Baby monads. Read the lecture notes for week 6, then write a +Baby monads +----------- + + Read the lecture notes for week 6, then write a function `lift` that generalized the correspondence between + and `add`: that is, `lift` takes any two-place operation on integers and returns a version that takes arguments of type `int option` @@ -139,68 +143,72 @@ you're allowed to adjust what `b`, `y`, and `n` get assigned to. match x with None -> None | Some n -> f n;; -Church lists in System F ------------------------- +Booleans, Church numbers, and Church lists in OCaml +--------------------------------------------------- -These questions adapted from web materials written by some dude named Acar. +These questions adapted from web materials written by some smart dude named Acar. +The idea is to get booleans, Church numbers, "Church" lists, and +binary trees working in OCaml. Recall from class System F, or the polymorphic λ-calculus. - τ ::= α | τ1 → τ2 | ∀α. τ - e ::= x | λx:τ. e | e1 e2 | Λα. e | e [τ ] - Despite its simplicity, System F is quite expressive. As discussed in class, it has sufficient expressive power - to be able to encode many datatypes found in other programming languages, including products, sums, and - inductive datatypes. - For example, recall that bool may be encoded as follows: - bool := ∀α. α → α → α - true := Λα. λt:α. λf :α. t - false := Λα. λt:α. λf :α. f - ifτ e then e1 else e2 := e [τ ] e1 e2 + τ ::= 'α | τ1 → τ2 | ∀'α. τ | c + e ::= x | λx:τ. e | e1 e2 | Λ'α. e | e [τ ] + + Recall that bool may be encoded as follows: + + bool := ∀α. α → α → α + true := Λα. λt:α. λf :α. t + false := Λα. λt:α. λf :α. f + (where τ indicates the type of e1 and e2) - Exercise 1. Show how to encode the following terms. Note that each of these terms, when applied to the + + Note that each of the following terms, when applied to the appropriate arguments, return a result of type bool. - (a) the term not that takes an argument of type bool and computes its negation; - (b) the term and that takes two arguments of type bool and computes their conjunction; - (c) the term or that takes two arguments of type bool and computes their disjunction. - The type nat may be encoded as follows: - nat := ∀α. α → (α → α) → α - zero := Λα. λz:α. λs:α → α. z - succ := λn:nat. Λα. λz:α. λs:α → α. s (n [α] z s) + + (a) the term not that takes an argument of type bool and computes its negation; + (b) the term and that takes two arguments of type bool and computes their conjunction; + (c) the term or that takes two arguments of type bool and computes their disjunction. + + The type nat (for "natural number") may be encoded as follows: + + nat := ∀α. α → (α → α) → α + zero := Λα. λz:α. λs:α → α. z + succ := λn:nat. Λα. λz:α. λs:α → α. s (n [α] z s) + A nat n is defined by what it can do, which is to compute a function iterated n times. In the polymorphic encoding above, the result of that iteration can be any type α, as long as you have a base element z : α and a function s : α → α. - Conveniently, this encoding “is” its own elimination form, in a sense: - rec(e, e0, x:τ. e1) := e [τ ] e0 (λx:τ. e1) - The case analysis is baked into the very definition of the type. - Exercise 2. Verify that these encodings (zero, succ , rec) typecheck in System F. Write down the typing - derivations for the terms. - 1 - - ══════════════════════════════════════════════════════════════════════════ - - As mentioned in class, System F can express any inductive datatype. Consider the following list type: - datatype ’a list = - Nil - | Cons of ’a * ’a list - We can encode τ lists, lists of elements of type τ as follows:1 - τ list := ∀α. α → (τ → α → α) → α - nilτ := Λα. λn:α. λc:τ → α → α. n - consτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) - As with nats, The τ list type’s case analyzing elimination form is just application. We can write functions - like map: - map : (σ → τ ) → σ list → τ list - := λf :σ → τ. λl:σ list. l [τ list] nilτ (λx:σ. λy:τ list. consτ (f x) y - Exercise 3. Consider the following simple binary tree type: - datatype ’a tree = - Leaf - | Node of ’a tree * ’a * ’a tree - (a) Give a System F encoding of binary trees, including a definition of the type τ tree and definitions of - the constructors leaf : τ tree and node : τ tree → τ → τ tree → τ tree. - (b) Write a function height : τ tree → nat. You may assume the above encoding of nat as well as definitions - of the functions plus : nat → nat → nat and max : nat → nat → nat. - (c) Write a function in-order : τ tree → τ list that computes the in-order traversal of a binary tree. You - may assume the above encoding of lists; define any auxiliary functions you need. - --- -Jim Pryor -jim@jimpryor.net + + **Excercise**: get booleans and Church numbers working in OCaml, + including OCaml versions of bool, true, false, zero, succ, and pred. + It's especially useful to do a version of pred, starting with one + of the (untyped) versions available in the lambda library + accessible from the main wiki page. The point of the excercise + is to do these things on your own, so avoid using the built-in + OCaml booleans and list predicates. + + Consider the following list type: + + type ’a list = Nil | Cons of ’a * ’a list + + We can encode τ lists, lists of elements of type τ as follows: + + τ list := ∀α. α → (τ → α → α) → α + nilτ := Λα. λn:α. λc:τ → α → α. n + makeListτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) + + As with nats, recursion is built into the datatype. + + We can write functions like head, isNil, and map: + + map : (σ → τ ) → σ list → τ list + + We've given you the type for map, you only need to give the term. + + With regard to `head`, think about what value to give back if the + argument is the empty list. Ultimately, we might want to make use + of our `'a option` technique, but for this assignment, just pick a + strategy, no matter how clunky. + + Please provide both the terms and the types for each item.