X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=assignment5.mdwn;h=cc714e90766536fcceb0927d297d276f923856c0;hp=43c3ef55fe6ecc8ad477c32c0ab670268ff7cb6f;hb=90294e766ccb45391a5d5e9909a0720ed92cca60;hpb=e519121696a33c116b0942cb289e74d4d978b80c diff --git a/assignment5.mdwn b/assignment5.mdwn index 43c3ef55..cc714e90 100644 --- a/assignment5.mdwn +++ b/assignment5.mdwn @@ -1,19 +1,19 @@ Assignment 5 -Types and OCAML +Types and OCaml --------------- 0. Recall that the S combinator is given by \x y z. x z (y z). - Give two different typings for this function in OCAML. + Give two different typings for this function in OCaml. To get you started, here's one typing for K: # let k (y:'a) (n:'b) = y;; - val k : 'a -> 'b -> 'a = + val k : 'a -> 'b -> 'a = [fun] # k 1 true;; - : int = 1 -1. Which of the following expressions is well-typed in OCAML? +1. Which of the following expressions is well-typed in OCaml? For those that are, give the type of the expression as a whole. For those that are not, why not? @@ -68,11 +68,12 @@ Types and OCAML let _ = omega () in 2;; -3. The following expression is an attempt to make explicit the +3. This problem is to begin thinking about controlling order of evaluation. +The following expression is an attempt to make explicit the behavior of `if`-`then`-`else` explored in the previous question. The idea is to define an `if`-`then`-`else` expression using -other expression types. So assume that "yes" is any OCAML expression, -and "no" is any other OCAML expression (of the same type as "yes"!), +other expression types. So assume that "yes" is any OCaml expression, +and "no" is any other OCaml expression (of the same type as "yes"!), and that "bool" is any boolean. Then we can try the following: "if bool then yes else no" should be equivalent to @@ -122,7 +123,10 @@ you're allowed to adjust what `b`, `y`, and `n` get assigned to. [[Hint assignment 5 problem 3]] -4. Baby monads. Read the lecture notes for week 6, then write a +Baby monads +----------- + + Read the lecture notes for week 6, then write a function `lift` that generalized the correspondence between + and `add`: that is, `lift` takes any two-place operation on integers and returns a version that takes arguments of type `int option` @@ -138,3 +142,73 @@ you're allowed to adjust what `b`, `y`, and `n` get assigned to. let bind (x: int option) (f: int -> (int option)) = match x with None -> None | Some n -> f n;; + +Booleans, Church numbers, and Church lists in OCaml +--------------------------------------------------- + +These questions adapted from web materials written by some smart dude named Acar. +The idea is to get booleans, Church numbers, "Church" lists, and +binary trees working in OCaml. + + Recall from class System F, or the polymorphic λ-calculus. + + τ ::= 'α | τ1 → τ2 | ∀'α. τ | c + e ::= x | λx:τ. e | e1 e2 | Λ'α. e | e [τ ] + + Recall that bool may be encoded as follows: + + bool := ∀α. α → α → α + true := Λα. λt:α. λf :α. t + false := Λα. λt:α. λf :α. f + + (where τ indicates the type of e1 and e2) + + Note that each of the following terms, when applied to the + appropriate arguments, return a result of type bool. + + (a) the term not that takes an argument of type bool and computes its negation; + (b) the term and that takes two arguments of type bool and computes their conjunction; + (c) the term or that takes two arguments of type bool and computes their disjunction. + + The type nat (for "natural number") may be encoded as follows: + + nat := ∀α. α → (α → α) → α + zero := Λα. λz:α. λs:α → α. z + succ := λn:nat. Λα. λz:α. λs:α → α. s (n [α] z s) + + A nat n is defined by what it can do, which is to compute a function iterated n times. In the polymorphic + encoding above, the result of that iteration can be any type α, as long as you have a base element z : α and + a function s : α → α. + + **Excercise**: get booleans and Church numbers working in OCaml, + including OCaml versions of bool, true, false, zero, succ, and pred. + It's especially useful to do a version of pred, starting with one + of the (untyped) versions available in the lambda library + accessible from the main wiki page. The point of the excercise + is to do these things on your own, so avoid using the built-in + OCaml booleans and list predicates. + + Consider the following list type: + + type ’a list = Nil | Cons of ’a * ’a list + + We can encode τ lists, lists of elements of type τ as follows: + + τ list := ∀α. α → (τ → α → α) → α + nilτ := Λα. λn:α. λc:τ → α → α. n + makeListτ := λh:τ. λt:τ list. Λα. λn:α. λc:τ → α → α. c h (t [α] n c) + + As with nats, recursion is built into the datatype. + + We can write functions like head, isNil, and map: + + map : (σ → τ ) → σ list → τ list + + We've given you the type for map, you only need to give the term. + + With regard to `head`, think about what value to give back if the + argument is the empty list. Ultimately, we might want to make use + of our `'a option` technique, but for this assignment, just pick a + strategy, no matter how clunky. + + Please provide both the terms and the types for each item.