X-Git-Url: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=assignment3.mdwn;h=c4ea316287a62ceb9de2af825b31d6a53877470f;hp=d00dba0b2cbbfa44a6adc84668e145aa6e96a7b6;hb=e4ea387ecb1a2dcb069060afccbe8ac1e70f7061;hpb=97cbee46cb35e1eb7aa5ea5f8b1af3583f5b7522 diff --git a/assignment3.mdwn b/assignment3.mdwn index d00dba0b..c4ea3162 100644 --- a/assignment3.mdwn +++ b/assignment3.mdwn @@ -4,92 +4,131 @@ Assignment 3 Once again, the lambda evaluator will make working through this assignment much faster and more secure. -*Writing recursive functions on version 1 style lists* +#Writing recursive functions on version 1 style lists# -Recall that version 1 style lists are constructed like this: +Recall that version 1 style lists are constructed like this (see +[[lists and numbers]]): - - -do eta-reductions too - - - - - -
```+1. What does `head (tail (tail mylist))` evaluate to?
+
+2. Using the `length` function as a model, and using the predecessor
+function, write a function that computes factorials.  (Recall that n!,
+the factorial of n, is n times the factorial of n-1.)
+
+Warning: my browser isn't able to compute factorials of numbers
+greater than 2 (it does't provide enough resources for the JavaScript
+interpreter; web pages are not supposed to be that computationally
+intensive).
+
+3. (Easy) Write a function `listLenEq` that returns true just in case two lists have the
+same length.  That is,
+
+     listLenEq mylist (makeList meh (makeList meh (makeList meh nil))) ~~> true
+
+     listLenEq mylist (makeList meh (makeList meh nil))) ~~> false
+
+
+4. (Still easy) Now write the same function, but don't use the length function.
+
+5. In assignment 2, we discovered that version 3-type lists (the ones that
+work like Church numerals) made it much easier to define operations
+like `map` and `filter`.  But now that we have recursion in our toolbox,
+reasonable map and filter functions for version 1 lists are within our
+reach.  Give definitions for `map` and a `filter` for verson 1 type lists.
+
+#Computing with trees#
+
+Linguists analyze natural language expressions into trees.
+We'll need trees in future weeks, and tree structures provide good
+opportunities for learning how to write recursive functions.
+Making use of the resources we have at the moment, we can approximate
+trees as follows: instead of words, we'll use Church numerals.
+Then a tree will be a (version 1 type) list in which each element is
+itself a tree.  For simplicity, we'll adopt the convention that
+a tree of length 1 must contain a number as its only element.
+Then we have the following representations:
+
++   (a)           (b)             (c)
+    .
+   /|\            /\              /\
+  / | \          /\ 3            1 /\
+  1 2  3        1  2               2 3
+
+[[1];[2];[3]]  [[[1];[2]];[3]]   [[1];[[2];[3]]]

-
-/*jslint evil: true */
-
-/*members create, error, message, name, prototype, stringify, toSource,
-    toString, write
-*/
-
-/*global JSON, make_parse, parse, source, tree */
-
-// Make a new object that inherits members from an existing object.
-
-if (typeof Object.create !== 'function') {
-    Object.create = function (o) {
-        function F() {}
-        F.prototype = o;
-        return new F();
-    };
-}
-
-// Transform a token object into an exception object and throw it.
-
-Object.prototype.error = function (message, t) {
-    t = t || this;
-    t.name = "SyntaxError";
-    t.message = message;
-    throw t;
-};
-
-
-(function () {
-    var parse = make_parse();
-
-    function go(source) {
-        var string, tree, expr, eta;
-        try {
-            tree = parse(source);
- //           string = JSON.stringify(tree, ['key', 'name', 'message', 'value', 'arity', 'first', 'second', 'third', 'fourth'], 4);
-			expr = tree.handler();
-            // string = JSON.stringify(expr, ['key', 'name', 'message', 'value', 'arity', 'first', 'second', 'tag', 'variable', 'left', 'right', 'bound', 'body' ], 4);
-//			string = expr.to_string() + "\n\n~~>\n\n";
-			string = '';
-			eta = document.getElementById('ETA').checked;
-			string = string + reduce(expr, eta, false).to_string();
-        } catch (e) {
-            string = JSON.stringify(e, ['name', 'message', 'from', 'to', 'key',
-                    'value', 'arity', 'first', 'second', 'third', 'fourth'], 4);
-        }
-        document.getElementById('OUTPUT').innerHTML = string
-            .replace(/&/g, '&amp;')
-            .replace(/[<]/g, '&lt;');
-    }
-
-    document.getElementById('PARSE').onclick = function (e) {
-        go(document.getElementById('INPUT').value);
-    };
-}());
-
-
+
+Limitations of this scheme include the following: there is no easy way
+to label a constituent with a syntactic category (S or NP or VP,
+etc.), and there is no way to represent a tree in which a mother has a
+single daughter.
+
+When processing a tree, you can test for whether the tree contains
+only a numeral (in which case the tree is leaf node) by testing for
+whether the length of the list is less than or equal to 1.  This will
+be your base case for your recursive functions that operate on these
+trees.
+
+1.    Write a function that sums the number of leaves in a tree.
+
+Expected behavior:
+
++let t1 = (make-list 1 nil) in
+let t2 = (make-list 2 nil) in
+let t3 = (make-list 3 nil) in
+let t12 = (make-list t1 (make-list t2 nil)) in
+let t23 = (make-list t2 (make-list t3 nil)) in
+let ta = (make-list t1 t23) in
+let tb = (make-list t12 t3) in
+let tc = (make-list t1 (make-list t23 nil)) in
+
+count-leaves t1 ~~> 1
+count-leaves t2 ~~> 2
+count-leaves t3 ~~> 3
+count-leaves t12 ~~> 3
+count-leaves t23 ~~> 5
+count-leaves ta ~~> 6
+count-leaves tb ~~> 6
+count-leaves tc ~~> 6
+
+
+2.   Write a function that counts the number of leaves.
+
```