XGitUrl: http://lambda.jimpryor.net/git/gitweb.cgi?p=lambda.git;a=blobdiff_plain;f=assignment1.mdwn;h=ea8f2511992e97ff0caed2f8f002426dd2bc053b;hp=f0d858d6424a03e1afb1ce117409d10d6634ab28;hb=513394b4086fc02f9f8214c52d3e8bbaa9cdfd27;hpb=2ab239e41e823b7338c5c90be884ee3471e2099d
diff git a/assignment1.mdwn b/assignment1.mdwn
index f0d858d6..ea8f2511 100644
 a/assignment1.mdwn
+++ b/assignment1.mdwn
@@ 26,7 +26,7 @@
Your solution should have a form something like this:
 let
+ letrec
drop match lambda (n, xs). FILL_IN_THIS_PART
in drop
@@ 50,7 +50,7 @@
Here's a way to answer this problem making use of your answers to previous questions:
 let
+ letrec
drop match ... ; # as in problem 4
take match ... ; # as in problem 5
split match lambda (n, xs). let
@@ 80,7 +80,7 @@
10. Write a function `map` that generalizes `double`. This function expects a pair of arguments, the second being a sequence `xs` with elements of some type *t*, for example numbers. The first argument will be a function `f` that itself expects arguments of type *t* and returns some type *t'* of result. What `map` should return is a sequence of the results, in the same order as the corresponding original elements. The result should be that we could say:
 let
+ letrec
map match lambda (f, xs). FILL_IN_THIS_PART;
double match lambda xs. map ((lambda x. 2*x), xs)
in ...
@@ 90,11 +90,29 @@
map2 ((lambda (x,y). 10*x + y), [1, 2, 3], [4, 5, 6]) # evaluates to [14, 25, 36]
EXTRA CREDIT PROBLEMS
+###Extra credit problems###
+
+* In class I mentioned a function `&&` which occupied the position *between* its arguments, rather than coming before them (this is called an "infix" function). The way that it works is that `[1, 2, 3] && [4, 5]` evaluates to `[1, 2, 3, 4, 5]`. Define this function, making use of `letrec` and the simpler infix operation `&`.
+
+* Write a function `unmap2` that is something like the inverse of `map2`. This function expects two arguments, the second being a sequence of elements of some type *t*. The first is a function `g` that expects a single argument of type *t* and returns a *pair* of results, rather than just one result. We want to collate these results, the first into one list, and the second into a different list. Then `unmap2` should return those two lists. Thus if:
+
+ g z1 # evaluates to [x1, y1]
+ g z2 # evaluates to [x2, y2]
+ g z3 # evaluates to [x3, y3]
+
+ Then `unmap2 (g, [z1, z2, z3])` should evaluate to `([x1, x2, x3], [y1, y2, y3])`.
+
+* Write a function `takewhile` that expects a `p` argument like `filter`, and also a sequence. The result should behave like this:
+
+ takewhile ((lambda x. x < 10), [1, 2, 20, 4, 40]) # evaluates to [1, 2]
+
+ Note that we stop "taking" once we reach `20`, even though there are still later elements in the list that are less than `10`.
+
+* Write a function `dropwhile` that expects a `p` argument like `filter`, and also a sequence. The result should behave like this:
*Will post shortly*
+ dropwhile ((lambda x. x < 10), [1, 2, 20, 4, 40]) # evaluates to [20, 4, 40]

+ Note that we stop "dropping" once we reach `20`, even though there are still later elements in the list that are less than `10`.

+* Write a function `reverse` that returns the reverse of a sequence. Thus, `reverse [1, 2, 3, 4]` should evaluate to `[4, 3, 2, 1]`.