edits
[lambda.git] / zipper-lists-continuations.mdwn
index d16a24e..5980c6f 100644 (file)
@@ -1,11 +1,14 @@
+
+[[!toc]]
+
 Today we're going to encounter continuations.  We're going to come at
 them from three different directions, and each time we're going to end
 up at the same place: a particular monad, which we'll call the
 continuation monad.
 
-The three approches are:
+Much of this discussion benefited from detailed comments and
+suggestions from Ken Shan.
 
-[[!toc]]
 
 Rethinking the list monad
 -------------------------
@@ -30,16 +33,17 @@ then the choice of unit and bind is natural:
 
 Since the type of an `'a reader` is `env -> 'a` (by definition),
 the type of the `r_unit` function is `'a -> env -> 'a`, which is a
-specific case of the type of the *K* combinator.  It makes sense
+specific case of the type of the *K* combinator.  So it makes sense
 that *K* is the unit for the reader monad.
 
 Since the type of the `bind` operator is required to be
 
     r_bind : ('a reader) -> ('a -> 'b reader) -> ('b reader)
 
-We can reason our way to the correct `bind` function as follows. We start by declaring the type:
+We can reason our way to the correct `bind` function as follows. We
+start by declaring the types determined by the definition of a bind operation:
 
-    let r_bind (u : 'a reader) (f : 'a -> 'b reader) : ('b reader) =
+    let r_bind (u : 'a reader) (f : 'a -> 'b reader) : ('b reader) = ...
 
 Now we have to open up the `u` box and get out the `'a` object in order to
 feed it to `f`.  Since `u` is a function from environments to
@@ -103,7 +107,10 @@ looks like this:
     l_unit (a : 'a) = [a];;
     l_bind u f = List.concat (List.map f u);;
 
-Recall that `List.map` take a function and a list and returns the
+Thinking through the list monad will take a little time, but doing so
+will provide a connection with continuations.
+
+Recall that `List.map` takes a function and a list and returns the
 result to applying the function to the elements of the list:
 
     List.map (fun i -> [i;i+1]) [1;2] ~~> [[1; 2]; [2; 3]]
@@ -117,17 +124,35 @@ And sure enough,
 
     l_bind [1;2] (fun i -> [i, i+1]) ~~> [1; 2; 2; 3]
 
-But where is the reasoning that led us to this unit and bind?
-And what is the type `['a]`?  Magic.
-
-So let's indulge ourselves in a completely useless digression and see
-if we can gain some insight into the details of the List monad.  Let's
-choose type constructor that we can peer into, using some of the
-technology we built up so laboriously during the first half of the
-course.  We're going to use type 3 lists, partly because we know
-they'll give the result we want, but also because they're the coolest.
-These were the lists that made lists look like Church numerals with
-extra bits embdded in them:
+Now, why this unit, and why this bind?  Well, ideally a unit should
+not throw away information, so we can rule out `fun x -> []` as an
+ideal unit.  And units should not add more information than required,
+so there's no obvious reason to prefer `fun x -> [x,x]`.  In other
+words, `fun x -> [x]` is a reasonable choice for a unit.
+
+As for bind, an `'a list` monadic object contains a lot of objects of
+type `'a`, and we want to make some use of each of them (rather than
+arbitrarily throwing some of them away).  The only
+thing we know for sure we can do with an object of type `'a` is apply
+the function of type `'a -> 'a list` to them.  Once we've done so, we
+have a collection of lists, one for each of the `'a`'s.  One
+possibility is that we could gather them all up in a list, so that
+`bind' [1;2] (fun i -> [i;i]) ~~> [[1;1];[2;2]]`.  But that restricts
+the object returned by the second argument of `bind` to always be of
+type `'b list list`.  We can elimiate that restriction by flattening
+the list of lists into a single list: this is
+just List.concat applied to the output of List.map.  So there is some logic to the
+choice of unit and bind for the list monad.  
+
+Yet we can still desire to go deeper, and see if the appropriate bind
+behavior emerges from the types, as it did for the previously
+considered monads.  But we can't do that if we leave the list type 
+as a primitive Ocaml type.  However, we know several ways of implementing
+lists using just functions.  In what follows, we're going to use type
+3 lists (the right fold implementation), though it's important to
+wonder how things would change if we used some other strategy for
+implementating lists.  These were the lists that made lists look like
+Church numerals with extra bits embdded in them:
 
     empty list:                fun f z -> z
     list with one element:     fun f z -> f 1 z
@@ -135,8 +160,8 @@ extra bits embdded in them:
     list with three elements:  fun f z -> f 3 (f 2 (f 1 z))
 
 and so on.  To save time, we'll let the OCaml interpreter infer the
-principle types of these functions (rather than deducing what the
-types should be):
+principle types of these functions (rather than inferring what the
+types should be ourselves):
 
        # fun f z -> z;;
        - : 'a -> 'b -> 'b = <fun>
@@ -149,7 +174,8 @@ types should be):
 
 We can see what the consistent, general principle types are at the end, so we
 can stop. These types should remind you of the simply-typed lambda calculus
-types for Church numerals (`(o -> o) -> o -> o`) with one extra bit thrown in
+types for Church numerals (`(o -> o) -> o -> o`) with one extra type
+thrown in, the type of the element a the head of the list
 (in this case, an int).
 
 So here's our type constructor for our hand-rolled lists:
@@ -181,14 +207,21 @@ Unpacking the types gives:
             (f : 'a -> ('c -> 'd -> 'd) -> 'd -> 'd)
             : ('c -> 'd -> 'd) -> 'd -> 'd = ...
 
+Perhaps a bit intimiating.
 But it's a rookie mistake to quail before complicated types. You should
 be no more intimiated by complex types than by a linguistic tree with
 deeply embedded branches: complex structure created by repeated
 application of simple rules.
 
+The best way to follow the next long, somewhat intricate paragraph
+immediately following is to take this type and try to construct a term
+for it, just as we did for the monads above.  If you suceed, the
+discussion will just make brilliant sense.  If you get stuck, the
+discussion will explain how to proceed.
+
 As usual, we need to unpack the `u` box.  Examine the type of `u`.
-This time, `u` will only deliver up its contents if we give `u` as an
-argument a function expecting an `'a` and a `'b`. `u` will fold that function over its type `'a` members, and that's how we'll get the `'a`s we need. Thus:
+This time, `u` will only deliver up its contents if we give `u` an
+argument that is a function expecting an `'a` and a `'b`. `u` will fold that function over its type `'a` members, and that's how we'll get the `'a`s we need. Thus:
 
        ... u (fun (a : 'a) (b : 'b) -> ... f a ... ) ...
 
@@ -279,9 +312,6 @@ lists, so that they will print out.
 
 Ta da!
 
-To bad this digression, though it ties together various
-elements of the course, has *no relevance whatsoever* to the topic of
-continuations...
 
 Montague's PTQ treatment of DPs as generalized quantifiers
 ----------------------------------------------------------
@@ -324,19 +354,16 @@ constructor and the terms from the list monad derived above:
 The unit and the bind for the Montague continuation monad and the
 homemade List monad are the same terms!  In other words, the behavior
 of the List monad and the behavior of the continuations monad are
-parallel in a deep sense.  To emphasize the parallel, we can
-instantiate the type of the list' monad using the OCaml list type:
-
-    type 'a c_list = ('a -> 'a list) -> 'a list
+parallel in a deep sense.
 
 Have we really discovered that lists are secretly continuations?  Or
 have we merely found a way of simulating lists using list
-continuations?  Both perspectives are valid, and we can use our
-intuitions about the list monad to understand continuations, and vice
-versa (not to mention our intuitions about primitive recursion in
-Church numerals too).  The connections will be expecially relevant
-when we consider indefinites and Hamblin semantics on the linguistic
-side, and non-determinism on the list monad side.
+continuations?  Well, strictly speaking, what we have done is shown
+that one particular implementation of lists---the left fold
+implementation---gives rise to a continuation monad fairly naturally,
+and that this monad can reproduce the behavior of the standard list
+monad.  But what about other list implementations?  Do they give rise
+to monads that can be understood in terms of continuations?
 
 Refunctionalizing zippers
 -------------------------
@@ -642,11 +669,11 @@ generalizing the type of the continuation monad to
 
     type ('a -> 'b -> 'c) continuation = ('a -> 'b) -> 'c;;
 
-The tree monad
---------------
+The binary tree monad
+---------------------
 
 Of course, by now you may have realized that we have discovered a new
-monad, the tree monad:
+monad, the binary tree monad:
 
 <pre>
 type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
@@ -661,7 +688,7 @@ For once, let's check the Monad laws.  The left identity law is easy:
     Left identity: bind (unit a) f = bind (Leaf a) f = fa
 
 To check the other two laws, we need to make the following
-observation: it is easy to prove based on tree_bind by a simple
+observation: it is easy to prove based on `tree_bind` by a simple
 induction on the structure of the first argument that the tree
 resulting from `bind u f` is a tree with the same strucure as `u`,
 except that each leaf `a` has been replaced with `fa`:
@@ -696,7 +723,7 @@ As for the associative law,
     Associativity: bind (bind u f) g = bind u (\a. bind (fa) g)
 
 we'll give an example that will show how an inductive proof would
-have to proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then
+proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then
 
 \tree (. (. (. (. (a1)(a2)))))
 \tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))  ))