week9 tweak
[lambda.git] / week9.mdwn
index dbabb6d..2b80483 100644 (file)
@@ -100,7 +100,9 @@ Scheme is similar. There are various sorts of reference cells available in Schem
                (set-box! ycell 3)
                (+ x (unbox ycell)))
 
-When dealing with explicit-style mutation, there's a difference between the types and values of `ycell` and `!ycell` (or `(unbox ycell)`). The former has the type `int ref`: the variable `ycell` is assigned a reference cell that contains an `int`. The latter has the type `int`, and has whatever value is now stored in the relevant reference cell. In an implicit-style framework though, we only have the resources to refer to the contents of the relevant reference cell. `y` in fragment [G] or the C snippet above has the type `int`, and only ever evaluates to `int` values.
+(C has explicit-style mutable variables, too, which it calls *pointers*. But simple variables in C are already mutable, in the implicit style.)
+
+When dealing with explicit-style mutation, there's a difference between the types and values of `ycell` and `!ycell` (or in Scheme, `(unbox ycell)`). The former has the type `int ref`: the variable `ycell` is assigned a reference cell that contains an `int`. The latter has the type `int`, and has whatever value is now stored in the relevant reference cell. In an implicit-style framework though, we only have the resources to refer to the contents of the relevant reference cell. `y` in fragment [G] or the C snippet above has the type `int`, and only ever evaluates to `int` values.
 
 
 ##Controlling order##
@@ -224,7 +226,27 @@ Notice in these fragments that once we return from inside the call to `factory`,
 
 ##Referential opacity##
 
-In addition to order-sensitivity, when you're dealing with mutable variables you also give up a property that computer scientists call "referential transparency." It's not obvious whether they mean exactly the same by that as philosophers and linguists do, or only something approximately the same. What they do mean is a kind of substitution principle, illustrated here:
+In addition to order-sensitivity, when you're dealing with mutable variables you also give up a property that computer scientists call "referential transparency." It's not obvious whether they mean exactly the same by that as philosophers and linguists do, or only something approximately the same.
+
+The core idea to referential transparency is that when the same value is supplied to a context, the whole should always evaluate the same way. Mutation makes it possible to violate this. Consider:
+
+       let ycell = ref 1
+               in let f x = x + !ycell
+                       in let first = f 1      (* first is assigned the value 2 *)
+                               in ycell := 2; let second = f 1 (* second is assigned the value 3 *)
+                                       in first = second;; (* not true! *)
+
+Notice that the two invocations of `f 1` yield different results, even though the same value is being supplied as an argument to the same function.
+
+Similarly, functions like these:
+
+       let f cell = !cell;;
+
+       let g cell = cell := !cell + 1; !cell;;
+
+may return different results each time they're invoked, even if they're always supplied one and the same reference cell as argument.
+
+Computer scientists also associate referential transparency with a kind of substitution principle, illustrated here:
 
        let x = 1
                in (x, x)
@@ -249,6 +271,8 @@ Notice, however, that when mutable variables are present, the same substitution
        (* then creates a *new* ref 1 cell and returns *its* contents *)
 
 
+
+
 ##How to implement explicit-style mutable variables##
 
 We'll think about how to implement explicit-style mutation first. We suppose that we add some new syntactic forms to a language, let's call them `newref`, `deref`, and `setref`. And now we want to expand the semantics for the language so as to interpret these new forms.
@@ -267,7 +291,34 @@ Now we're going to relativize our interpretations not only to the assignment fun
 
 >      \[[expression]]<sub>g s</sub> = (value, s')
 
-With that kind of framework, we can interpret `newref`, `deref`, and `setref` as follows.
+For expressions we already know how to interpret, expect `s'` to just be `s`.
+An exception is complex expressions like `let var = expr1 in expr2`. Part of
+interpreting this will be to interpret the sub-expression `expr1`, and we have
+to allow that in doing that, the store may have already been updated. We want
+to use that possibly updated store when interpreting `expr2`. Like this:
+
+       let rec eval expression g s =
+               match expression with
+               ...
+               | Let (c, expr1, expr2) ->
+                       let (value, s') = eval expr1 g s
+                       (* s' may be different from s *)
+                       (* now we evaluate expr2 in a new environment where c has been associated
+                          with the result of evaluating expr1 in the current environment *)
+                       eval expr2 ((c, value) :: g) s'
+               ...
+
+Similarly:
+
+               ...
+               | Addition (expr1, expr2) ->
+                       let (value1, s') = eval expr1 g s
+                       in let (value2, s'') = eval expr2 g s'
+                       in (value1 + value2, s'')
+               ...
+
+Let's consider how to interpet our new syntactic forms `newref`, `deref`, and `setref`:
+
 
 1.     \[[newref starting_val]] should allocate a new reference cell in the store and insert `starting_val` into that cell. It should return some "key" or "index" or "pointer" to the newly created reference cell, so that we can do things like:
 
@@ -283,7 +334,7 @@ With that kind of framework, we can interpret `newref`, `deref`, and `setref` as
                let rec eval expression g s =
                        match expression with
                        ...
-                       | Newref expr ->
+                       | Newref (expr) ->
                                let (starting_val, s') = eval expr g s
                                (* note that s' may be different from s, if expr itself contained any mutation operations *)
                                (* now we want to retrieve the next free index in s' *)
@@ -294,12 +345,12 @@ With that kind of framework, we can interpret `newref`, `deref`, and `setref` as
                                in (Index new_index, s'')
                        ... 
 
-2.     When `expr` evaluates to a `store_index`, then `deref expr` should evaluate to whatever value is at that index in the current store. (If `expr` evaluates to a value of another type, `deref expr` is undefined.) In this operation, we don't change the store at all; we're just reading from it. So we'll return the same store back unchanged.
+2.     When `expr` evaluates to a `store_index`, then `deref expr` should evaluate to whatever value is at that index in the current store. (If `expr` evaluates to a value of another type, `deref expr` is undefined.) In this operation, we don't change the store at all; we're just reading from it. So we'll return the same store back unchanged (assuming it wasn't changed during the evaluation of `expr`).
 
                let rec eval expression g s =
                        match expression with
                        ...
-                       | Deref expr ->
+                       | Deref (expr) ->
                                let (Index n, s') = eval expr g s
                                (* note that s' may be different from s, if expr itself contained any mutation operations *)
                                in (List.nth s' n, s')
@@ -310,9 +361,9 @@ With that kind of framework, we can interpret `newref`, `deref`, and `setref` as
                let rec eval expression g s =
                        match expression with
                        ...
-                       | Setref expr1 expr2
+                       | Setref (expr1, expr2) ->
                                let (Index n, s') = eval expr1 g s
-                               (* note that s' may be different from s, if expr itself contained any mutation operations *)
+                               (* note that s' may be different from s, if expr1 itself contained any mutation operations *)
                                in let (new_value, s'') = eval expr2 g s'
                                (* now we create a list which is just like s'' except it has new_value in index n *)
                                in let rec replace_nth lst m =
@@ -325,6 +376,9 @@ With that kind of framework, we can interpret `newref`, `deref`, and `setref` as
                        ...
 
 
+
+
+
 ##How to implement implicit-style mutable variables##
 
 With implicit-style mutation, we don't have new syntactic forms like `newref` and `deref`. Instead, we just treat ordinary variables as being mutable. You could if you wanted to have some variables be mutable and others not; perhaps the first sort are written in Greek and the second in Latin. But we will suppose all variables in our language are mutable.
@@ -335,7 +389,7 @@ This brings up an interesting conceptual distinction. Formerly, we'd naturally t
 
 To handle implicit-style mutation, we'll need to re-implement the way we interpret expressions like `x` and `let x = expr1 in expr2`. We will also have just one new syntactic form, `change x to expr1 then expr2`.
 
-Here's how to implement these. We'll suppose that our assignment function is list of pairs, as in [week6](/reader_monad_for_variable_binding).
+Here's how to implement these. We'll suppose that our assignment function is list of pairs, as in [week7](/reader_monad_for_variable_binding).
 
        let rec eval expression g s =
                match expression with
@@ -346,7 +400,7 @@ Here's how to implement these. We'll suppose that our assignment function is lis
                        in let value = List.nth s index
                        in (value, s)
 
-               | Let (c : char) expr1 expr2 ->
+               | Let ((c : char), expr1, expr2) ->
                        let (starting_val, s') = eval expr1 g s
                        (* get next free index in s' *)
                        in let new_index = List.length s'
@@ -355,7 +409,7 @@ Here's how to implement these. We'll suppose that our assignment function is lis
                        (* evaluate expr2 using a new assignment function and store *)
                        in eval expr2 ((c, new_index) :: g) s''
 
-               | Change (c : char) expr1 expr2 ->
+               | Change ((c : char), expr1, expr2) ->
                        let (new_value, s') = eval expr1 g s
                        (* lookup which index is associated with Var c *)
                        in let index = List.assoc c g
@@ -501,6 +555,9 @@ To get the whole process started, the complex computation so defined will need t
     Notice: h, p have same value (1), but f (h, p) and f (h, h) differ
 
 
+Fine and Pryor on "coordinated contents" (see, e.g., [Hyper-Evaluativity](http://www.jimpryor.net/research/papers/Hyper-Evaluativity.txt))
+
+
 ##Five grades of mutation involvement##
 
 -- FIXME --
@@ -564,7 +621,29 @@ To get the whole process started, the complex computation so defined will need t
        We use the `None`/`Some factorial` option type here just as a way to ensure that the contents of `fact_cell` are of the same type both at the start and the end of the block.
 
 
+##Offsite Reading##
+
+*      [[!wikipedia Declarative programming]]
+*      [[!wikipedia Functional programming]]
+*      [[!wikipedia Purely functional]]
+*      [[!wikipedia Side effect (computer science) desc="Side effects"]]
+*      [[!wikipedia Referential transparency (computer science)]]
+*      [[!wikipedia Imperative programming]]
+*      [[!wikipedia Reference (computer science) desc="References"]]
+*      [[!wikipedia Pointer (computing) desc="Pointers"]]
+*      [Pointers in OCaml](http://caml.inria.fr/resources/doc/guides/pointers.html)
+
 <!--
-Fine and Pryor on "coordinated contents" (see, e.g., [Hyper-Evaluativity](http://www.jimpryor.net/research/papers/Hyper-Evaluativity.txt))
+# General issues about variables and scope in programming languages #
+
+*      [[!wikipedia Variable (programming) desc="Variables"]]
+*      [[!wikipedia Free variables and bound variables]]
+*      [[!wikipedia Variable shadowing]]
+*      [[!wikipedia Name binding]]
+*      [[!wikipedia Name resolution]]
+*      [[!wikipedia Parameter (computer science) desc="Function parameters"]]
+*      [[!wikipedia Scope (programming) desc="Variable scope"]]
+*      [[!wikipedia Closure (computer science) desc="Closures"]]
+
 -->