index,new_stuff
[lambda.git] / week9.mdwn
index a738524..1992e20 100644 (file)
@@ -429,7 +429,7 @@ Here's how to implement these. We'll suppose that our assignment function is lis
                        (* evaluate expr2 using original assignment function and new store *)
                        in eval expr2 g s''
 
-Note: Chris uses this kind of machinery on the third page of the Nov 22 handout. Except he implements `Let` the way we here implement `Change`. And he adds an implementation of `Alias` (see below). Some minor differences: on his handout (and following Groenendijk, Stockhof and Veltman), he uses `r` and `g` where we use `g` and `s` respectively. Also, he implements his `r` with a function from `char` to `int`, instead of a `(char * int) list`, as we do here. It should be obvious how to translate between these. His implementation requires that variables always already have an associated peg. So that when we call `Let(c, expr1, expr2)` for the first time with `c`, there's a peg whose value is to be updated. That's easier to ensure when you implement the assignment as a function than as a `(char * int) list`.
+Note: Chris uses this kind of machinery on the third page of the Nov 22 handout. Except he implements `Let` the way we here implement `Change`. And he adds an implementation of `Alias` (see below). Some minor differences: on his handout (and following Groenendijk, Stokhof and Veltman), he uses `r` and `g` where we use `g` and `s` respectively. Also, he implements his `r` with a function from `char` to `int`, instead of a `(char * int) list`, as we do here. It should be obvious how to translate between these. His implementation requires that variables always already have an associated peg. So that when we call `Let(c, expr1, expr2)` for the first time with `c`, there's a peg whose value is to be updated. That's easier to ensure when you implement the assignment as a function than as a `(char * int) list`.
 
 
 ##How to implement mutation with a State monad##
@@ -446,9 +446,9 @@ Here's the implementation of the State monad, together with an implementation of
        (* alternatively, an env could be implemented as type char -> int *)
 
        type 'a reader = env -> 'a;;
-       let unit_reader (value : 'a) : 'a reader =
+       let reader_unit (value : 'a) : 'a reader =
                fun e -> value;;
-       let bind_reader (u : 'a reader) (f : 'a -> 'b reader) : 'b reader =
+       let reader_bind (u : 'a reader) (f : 'a -> 'b reader) : 'b reader =
                fun e -> let a = u e
                                 in let u' = f a
                                 in u' e;;
@@ -458,9 +458,9 @@ Here's the implementation of the State monad, together with an implementation of
        (* this corresponds to having only a single mutable variable *)
 
        type 'a state = store -> ('a, store);;
-       let unit_state (value : 'a) : 'a state =
+       let state_unit (value : 'a) : 'a state =
                fun s -> (value, s);;
-       let bind_state (u : 'a state) (f : 'a -> 'b state) : 'b state =
+       let state_bind (u : 'a state) (f : 'a -> 'b state) : 'b state =
                fun s -> let (a, s') = u s
                                 in let u' = f a
                                 in u' s';;
@@ -503,6 +503,8 @@ To get the whole process started, the complex computation so defined will need t
        in computation initial_store;;
 
 
+*      See also our [[State Monad Tutorial]].
+
 
 ##Aliasing or Passing by reference##
 
@@ -628,10 +630,10 @@ Programming languages tend to provide a bunch of mutation-related capabilities a
        Because of the particular way the numerical identity predicates are implemented in all of these languages, it doesn't quite match our conceptual expectations. For instance, For instance, if `ycell` is a reference cell, then `ref !ycell` will always be a numerically distinct reference cell containing the same value. We get this pattern of comparisons in OCaml:
 
                ycell == ycell
-               ycell != ref !ycell (* these aren't numerically identical *)
+               ycell != ref !ycell (* true, these aren't numerically identical *)
 
                ycell = ycell
-               ycell = ref !ycell (* they are qualitatively indiscernible *)
+               ycell = ref !ycell (* true, they are qualitatively indiscernible *)
 
        But now what about?
 
@@ -751,6 +753,7 @@ Programming languages tend to provide a bunch of mutation-related capabilities a
 
        In point 7 of the Rosetta Stone discussion, the contrast between call-by-name and call-by-value evaluation order appears (though we don't yet call it that). We'll be discussing that more in coming weeks. In the [[damn]] example, continuations and other kinds of side-effects (namely, printing) make an appearance. These too will be center-stage in coming weeks.
  
+*      Now would also be a good time to read [Calculator Improvements](/week10). This reviews the different systems discussed above, as well as other capabilities we can add to the calculators introduced in [week7](/reader_monad_for_variable_binding). We will be building off of that in coming weeks.
 
 
 ##Offsite Reading##