edits
[lambda.git] / week7.mdwn
index c81ff12..d3e4b47 100644 (file)
@@ -1,8 +1,165 @@
 [[!toc]]
 
 
-Monads
-------
+Towards Monads: Safe division
+-----------------------------
+
+[This section used to be near the end of the lecture notes for week 6]
+
+We begin by reasoning about what should happen when someone tries to
+divide by zero.  This will lead us to a general programming technique
+called a *monad*, which we'll see in many guises in the weeks to come.
+
+Integer division presupposes that its second argument
+(the divisor) is not zero, upon pain of presupposition failure.
+Here's what my OCaml interpreter says:
+
+    # 12/0;;
+    Exception: Division_by_zero.
+
+So we want to explicitly allow for the possibility that
+division will return something other than a number.
+We'll use OCaml's `option` type, which works like this:
+
+    # type 'a option = None | Some of 'a;;
+    # None;;
+    - : 'a option = None
+    # Some 3;;
+    - : int option = Some 3
+
+So if a division is normal, we return some number, but if the divisor is
+zero, we return `None`. As a mnemonic aid, we'll append a `'` to the end of our new divide function.
+
+<pre>
+let div' (x:int) (y:int) =
+  match y with
+         0 -> None
+    | _ -> Some (x / y);;
+
+(*
+val div' : int -> int -> int option = fun
+# div' 12 2;;
+- : int option = Some 6
+# div' 12 0;;
+- : int option = None
+# div' (div' 12 2) 3;;
+Characters 4-14:
+  div' (div' 12 2) 3;;
+        ^^^^^^^^^^
+Error: This expression has type int option
+       but an expression was expected of type int
+*)
+</pre>
+
+This starts off well: dividing 12 by 2, no problem; dividing 12 by 0,
+just the behavior we were hoping for.  But we want to be able to use
+the output of the safe-division function as input for further division
+operations.  So we have to jack up the types of the inputs:
+
+<pre>
+let div' (u:int option) (v:int option) =
+  match v with
+         None -> None
+    | Some 0 -> None
+       | Some y -> (match u with
+                                         None -> None
+                    | Some x -> Some (x / y));;
+
+(*
+val div' : int option -> int option -> int option = <fun>
+# div' (Some 12) (Some 2);;
+- : int option = Some 6
+# div' (Some 12) (Some 0);;
+- : int option = None
+# div' (div' (Some 12) (Some 0)) (Some 3);;
+- : int option = None
+*)
+</pre>
+
+Beautiful, just what we need: now we can try to divide by anything we
+want, without fear that we're going to trigger any system errors.
+
+I prefer to line up the `match` alternatives by using OCaml's
+built-in tuple type:
+
+<pre>
+let div' (u:int option) (v:int option) =
+  match (u, v) with
+         (None, _) -> None
+    | (_, None) -> None
+    | (_, Some 0) -> None
+       | (Some x, Some y) -> Some (x / y);;
+</pre>
+
+So far so good.  But what if we want to combine division with
+other arithmetic operations?  We need to make those other operations
+aware of the possibility that one of their arguments has triggered a
+presupposition failure:
+
+<pre>
+let add' (u:int option) (v:int option) =
+  match (u, v) with
+         (None, _) -> None
+    | (_, None) -> None
+    | (Some x, Some y) -> Some (x + y);;
+
+(*
+val add' : int option -> int option -> int option = <fun>
+# add' (Some 12) (Some 4);;
+- : int option = Some 16
+# add' (div' (Some 12) (Some 0)) (Some 4);;
+- : int option = None
+*)
+</pre>
+
+This works, but is somewhat disappointing: the `add'` operation
+doesn't trigger any presupposition of its own, so it is a shame that
+it needs to be adjusted because someone else might make trouble.
+
+But we can automate the adjustment.  The standard way in OCaml,
+Haskell, etc., is to define a `bind` operator (the name `bind` is not
+well chosen to resonate with linguists, but what can you do). To continue our mnemonic association, we'll put a `'` after the name "bind" as well.
+
+<pre>
+let bind' (u: int option) (f: int -> (int option)) =
+  match u with
+         None -> None
+    | Some x -> f x;;
+
+let add' (u: int option) (v: int option)  =
+  bind' u (fun x -> bind' v (fun y -> Some (x + y)));;
+
+let div' (u: int option) (v: int option) =
+  bind' u (fun x -> bind' v (fun y -> if (0 = y) then None else Some (x / y)));;
+
+(*
+#  div' (div' (Some 12) (Some 2)) (Some 3);;
+- : int option = Some 2
+#  div' (div' (Some 12) (Some 0)) (Some 3);;
+- : int option = None
+# add' (div' (Some 12) (Some 0)) (Some 3);;
+- : int option = None
+*)
+</pre>
+
+Compare the new definitions of `add'` and `div'` closely: the definition
+for `add'` shows what it looks like to equip an ordinary operation to
+survive in dangerous presupposition-filled world.  Note that the new
+definition of `add'` does not need to test whether its arguments are
+None objects or real numbers---those details are hidden inside of the
+`bind'` function.
+
+The definition of `div'` shows exactly what extra needs to be said in
+order to trigger the no-division-by-zero presupposition.
+
+For linguists: this is a complete theory of a particularly simply form
+of presupposition projection (every predicate is a hole).
+
+
+
+
+Monads in General
+-----------------
 
 Start by (re)reading the discussion of monads in the lecture notes for
 week 6 [[Towards Monads]].
@@ -305,7 +462,12 @@ Here are some papers that introduced monads into functional programming:
 *      [Eugenio Moggi, Notions of Computation and Monads](http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf): Information and Computation 93 (1) 1991.
 
 *      [Philip Wadler. Monads for Functional Programming](http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf):
-in M. Broy, editor, *Marktoberdorf Summer School on Program Design Calculi*, Springer Verlag, NATO ASI Series F: Computer and systems sciences, Volume 118, August 1992. Also in J. Jeuring and E. Meijer, editors, *Advanced Functional Programming*, Springer Verlag, LNCS 925, 1995. Some errata fixed August 2001.
+in M. Broy, editor, *Marktoberdorf Summer School on Program Design
+Calculi*, Springer Verlag, NATO ASI Series F: Computer and systems
+sciences, Volume 118, August 1992. Also in J. Jeuring and E. Meijer,
+editors, *Advanced Functional Programming*, Springer Verlag, 
+LNCS 925, 1995. Some errata fixed August 2001.  This paper has a great first
+line: **Shall I be pure, or impure?**
 <!--   The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or non-determinism. Three case studies are looked at in detail: how monads ease the modification of a simple evaluator; how monads act as the basis of a datatype of arrays subject to in-place update; and how monads can be used to build parsers.-->
 
 *      [Philip Wadler. The essence of functional programming](http://homepages.inf.ed.ac.uk/wadler/papers/essence/essence.ps):
@@ -314,7 +476,7 @@ invited talk, *19'th Symposium on Principles of Programming Languages*, ACM Pres
        Monads increase the ease with which programs may be modified. They can mimic the effect of impure features such as exceptions, state, and continuations; and also provide effects not easily achieved with such features. The types of a program reflect which effects occur.
        The first section is an extended example of the use of monads. A simple interpreter is modified to support various extra features: error messages, state, output, and non-deterministic choice. The second section describes the relation between monads and continuation-passing style. The third section sketches how monads are used in a compiler for Haskell that is written in Haskell.-->
 
-*      [Daniel Friedman. A Schemer's View of Monads](/schemersviewofmonads.ps): from <https://www.cs.indiana.edu/cgi-pub/c311/doku.php?id=home> but hosted the link above is to a local copy.
+*      [Daniel Friedman. A Schemer's View of Monads](/schemersviewofmonads.ps): from <https://www.cs.indiana.edu/cgi-pub/c311/doku.php?id=home> but the link above is to a local copy.
 
 There's a long list of monad tutorials on the [[Offsite Reading]] page. Skimming the titles makes me laugh.
 
@@ -420,236 +582,7 @@ Continuation monad.
 In the meantime, we'll look at several linguistic applications for monads, based
 on what's called the *reader monad*.
 
+##[[Reader monad]]##
 
-The reader monad
-----------------
-
-Introduce
-
-Heim and Kratzer's "Predicate Abstraction Rule"
-
-
-
-The intensionality monad
-------------------------
-...
-intensional function application.  In Shan (2001) [Monads for natural
-language semantics](http://arxiv.org/abs/cs/0205026v1), Ken shows that
-making expressions sensitive to the world of evaluation is
-conceptually the same thing as making use of a *reader monad* (which
-we'll see again soon).  This technique was beautifully re-invented
-by Ben-Avi and Winter (2007) in their paper [A modular
-approach to
-intensionality](http://parles.upf.es/glif/pub/sub11/individual/bena_wint.pdf),
-though without explicitly using monads.
-
-All of the code in the discussion below can be found here: [[intensionality-monad.ml]].
-To run it, download the file, start OCaml, and say 
-
-       # #use "intensionality-monad.ml";;
-
-Note the extra `#` attached to the directive `use`.
-
-Here's the idea: since people can have different attitudes towards
-different propositions that happen to have the same truth value, we
-can't have sentences denoting simple truth values.  If we did, then if John
-believed that the earth was round, it would force him to believe
-Fermat's last theorem holds, since both propositions are equally true.
-The traditional solution is to allow sentences to denote a function
-from worlds to truth values, what Montague called an intension.  
-So if `s` is the type of possible worlds, we have the following
-situation:
-
-
-<pre>
-Extensional types                 Intensional types       Examples
--------------------------------------------------------------------
-
-S         s->t                    s->t                    John left
-DP        s->e                    s->e                    John
-VP        s->e->t                 s->(s->e)->t            left
-Vt        s->e->e->t              s->(s->e)->(s->e)->t    saw
-Vs        s->t->e->t              s->(s->t)->(s->e)->t    thought
-</pre>
-
-This system is modeled on the way Montague arranged his grammar.
-There are significant simplifications: for instance, determiner
-phrases are thought of as corresponding to individuals rather than to
-generalized quantifiers.  If you're curious about the initial `s`'s
-in the extensional types, they're there because the behavior of these
-expressions depends on which world they're evaluated at.  If you are
-in a situation in which you can hold the evaluation world constant,
-you can further simplify the extensional types.  Usually, the
-dependence of the extension of an expression on the evaluation world
-is hidden in a superscript, or built into the lexical interpretation
-function.
-
-The main difference between the intensional types and the extensional
-types is that in the intensional types, the arguments are functions
-from worlds to extensions: intransitive verb phrases like "left" now
-take intensional concepts as arguments (type s->e) rather than plain
-individuals (type e), and attitude verbs like "think" now take
-propositions (type s->t) rather than truth values (type t).
-
-The intenstional types are more complicated than the intensional
-types.  Wouldn't it be nice to keep the complicated types to just
-those attitude verbs that need to worry about intensions, and keep the
-rest of the grammar as extensional as possible?  This desire is
-parallel to our earlier desire to limit the concern about division by
-zero to the division function, and let the other functions, like
-addition or multiplication, ignore division-by-zero problems as much
-as possible.
-
-So here's what we do:
-
-In OCaml, we'll use integers to model possible worlds:
-
-       type s = int;;
-       type e = char;;
-       type t = bool;;
-
-Characters (characters in the computational sense, i.e., letters like
-`'a'` and `'b'`, not Kaplanian characters) will model individuals, and
-OCaml booleans will serve for truth values.
-
-       type 'a intension = s -> 'a;;
-       let unit x (w:s) = x;;
-
-       let ann = unit 'a';;
-       let bill = unit 'b';;
-       let cam = unit 'c';;
-
-In our monad, the intension of an extensional type `'a` is `s -> 'a`,
-a function from worlds to extensions.  Our unit will be the constant
-function (an instance of the K combinator) that returns the same
-individual at each world.
-
-Then `ann = unit 'a'` is a rigid designator: a constant function from
-worlds to individuals that returns `'a'` no matter which world is used
-as an argument.
-
-Let's test compliance with the left identity law:
-
-       # let bind u f (w:s) = f (u w) w;;
-       val bind : (s -> 'a) -> ('a -> s -> 'b) -> s -> 'b = <fun>
-       # bind (unit 'a') unit 1;;
-       - : char = 'a'
-
-We'll assume that this and the other laws always hold.
-
-We now build up some extensional meanings:
-
-       let left w x = match (w,x) with (2,'c') -> false | _ -> true;;
-
-This function says that everyone always left, except for Cam in world
-2 (i.e., `left 2 'c' == false`).
-
-Then the way to evaluate an extensional sentence is to determine the
-extension of the verb phrase, and then apply that extension to the
-extension of the subject:
-
-       let extapp fn arg w = fn w (arg w);;
-
-       extapp left ann 1;;
-       # - : bool = true
-
-       extapp left cam 2;;
-       # - : bool = false
-
-`extapp` stands for "extensional function application".
-So Ann left in world 1, but Cam didn't leave in world 2.
-
-A transitive predicate:
-
-       let saw w x y = (w < 2) && (y < x);;
-       extapp (extapp saw bill) ann 1;; (* true *)
-       extapp (extapp saw bill) ann 2;; (* false *)
-
-In world 1, Ann saw Bill and Cam, and Bill saw Cam.  No one saw anyone
-in world two.
-
-Good.  Now for intensions:
-
-       let intapp fn arg w = fn w arg;;
-
-The only difference between intensional application and extensional
-application is that we don't feed the evaluation world to the argument.
-(See Montague's rules of (intensional) functional application, T4 -- T10.)
-In other words, instead of taking an extension as an argument,
-Montague's predicates take a full-blown intension.  
-
-But for so-called extensional predicates like "left" and "saw", 
-the extra power is not used.  We'd like to define intensional versions
-of these predicates that depend only on their extensional essence.
-Just as we used bind to define a version of addition that interacted
-with the option monad, we now use bind to intensionalize an
-extensional verb:
-
-       let lift pred w arg = bind arg (fun x w -> pred w x) w;;
-
-       intapp (lift left) ann 1;; (* true: Ann still left in world 1 *)
-       intapp (lift left) cam 2;; (* false: Cam still didn't leave in world 2 *)
-
-Because `bind` unwraps the intensionality of the argument, when the
-lifted "left" receives an individual concept (e.g., `unit 'a'`) as
-argument, it's the extension of the individual concept (i.e., `'a'`)
-that gets fed to the basic extensional version of "left".  (For those
-of you who know Montague's PTQ, this use of bind captures Montague's
-third meaning postulate.)
-
-Likewise for extensional transitive predicates like "saw":
-
-       let lift2 pred w arg1 arg2 = 
-         bind arg1 (fun x -> bind arg2 (fun y w -> pred w x y)) w;;
-       intapp (intapp (lift2 saw) bill) ann 1;;  (* true: Ann saw Bill in world 1 *)
-       intapp (intapp (lift2 saw) bill) ann 2;;  (* false: No one saw anyone in world 2 *)
-
-Crucially, an intensional predicate does not use `bind` to consume its
-arguments.  Attitude verbs like "thought" are intensional with respect
-to their sentential complement, but extensional with respect to their
-subject (as Montague noticed, almost all verbs in English are
-extensional with respect to their subject; a possible exception is "appear"):
-
-       let think (w:s) (p:s->t) (x:e) = 
-         match (x, p 2) with ('a', false) -> false | _ -> p w;;
-
-Ann disbelieves any proposition that is false in world 2.  Apparently,
-she firmly believes we're in world 2.  Everyone else believes a
-proposition iff that proposition is true in the world of evaluation.
-
-       intapp (lift (intapp think
-                                                (intapp (lift left)
-                                                                (unit 'b'))))
-                  (unit 'a') 
-       1;; (* true *)
-
-So in world 1, Ann thinks that Bill left (because in world 2, Bill did leave).
-
-The `lift` is there because "think Bill left" is extensional wrt its
-subject.  The important bit is that "think" takes the intension of
-"Bill left" as its first argument.
-
-       intapp (lift (intapp think
-                                                (intapp (lift left)
-                                                                (unit 'c'))))
-                  (unit 'a') 
-       1;; (* false *)
-
-But even in world 1, Ann doesn't believe that Cam left (even though he
-did: `intapp (lift left) cam 1 == true`).  Ann's thoughts are hung up
-on what is happening in world 2, where Cam doesn't leave.
-
-*Small project*: add intersective ("red") and non-intersective
- adjectives ("good") to the fragment.  The intersective adjectives
- will be extensional with respect to the nominal they combine with
- (using bind), and the non-intersective adjectives will take
- intensional arguments.
-
-Finally, note that within an intensional grammar, extensional funtion
-application is essentially just bind:
-
-       # let swap f x y = f y x;;
-       # bind cam (swap left) 2;;
-       - : bool = false
-
+##[[Intensionality monad]]##