translating: more about records
[lambda.git] / week7.mdwn
index fe9bedb..7544425 100644 (file)
@@ -58,12 +58,11 @@ operations.  So we have to jack up the types of the inputs:
 
 <pre>
 let div' (u:int option) (v:int option) =
-  match v with
+  match u with
          None -> None
-    | Some 0 -> None
-       | Some y -> (match u with
-                                         None -> None
-                    | Some x -> Some (x / y));;
+       | Some x -> (match v with
+                                 Some 0 -> None
+                               | Some y -> Some (x / y));;
 
 (*
 val div' : int option -> int option -> int option = <fun>
@@ -165,7 +164,7 @@ theory of accommodation, and a theory of the situations in which
 material within the sentence can satisfy presuppositions for other
 material that otherwise would trigger a presupposition violation; but,
 not surprisingly, these refinements will require some more
-sophisticated techniques than the super-simple option monad.]
+sophisticated techniques than the super-simple Option monad.]
 
 
 Monads in General
@@ -228,7 +227,7 @@ that provides at least the following three elements:
 
        So `unit` is a way to put something inside of a monadic box. It's crucial
        to the usefulness of monads that there will be monadic boxes that
-       aren't the result of that operation. In the option/maybe monad, for
+       aren't the result of that operation. In the Option/Maybe monad, for
        instance, there's also the empty box `None`. In another (whimsical)
        example, you might have, in addition to boxes merely containing integers,
        special boxes that contain integers and also sing a song when they're opened. 
@@ -237,9 +236,9 @@ that provides at least the following three elements:
        most straightforward way to lift an ordinary value into a monadic value
        of the monadic type in question.
 
-*      Thirdly, an operation that's often called `bind`. This is another
+*      Thirdly, an operation that's often called `bind`. As we said before, this is another
        unfortunate name: this operation is only very loosely connected to
-       what linguists usually mean by "binding." In our option/maybe monad, the
+       what linguists usually mean by "binding." In our Option/Maybe monad, the
        bind operation is:
 
                let bind u f = match u with None -> None | Some x -> f x;;
@@ -261,7 +260,7 @@ that provides at least the following three elements:
 
        The guts of the definition of the `bind` operation amount to
        specifying how to unbox the monadic value `u`.  In the `bind`
-       operator for the option monad, we unboxed the monadic value by
+       operator for the Option monad, we unboxed the monadic value by
        matching it with the pattern `Some x`---whenever `u`
        happened to be a box containing an integer `x`, this allowed us to
        get our hands on that `x` and feed it to `f`.
@@ -282,7 +281,7 @@ that provides at least the following three elements:
        For each new monadic type, this has to be worked out in an
        useful way.
 
-So the "option/maybe monad" consists of the polymorphic `option` type, the
+So the "Option/Maybe monad" consists of the polymorphic `option` type, the
 `unit`/return function, and the `bind` function.
 
 
@@ -314,12 +313,12 @@ singing box (the end result of evaluting `u`) and bind the variable
 `x`".
 
 (Note that the above "do" notation comes from Haskell. We're mentioning it here
-because you're likely to see it when reading about monads. It won't work in
+because you're likely to see it when reading about monads. (See our page on [[Translating between OCaml Scheme and Haskell]].) It won't work in
 OCaml. In fact, the `<-` symbol already means something different in OCaml,
 having to do with mutable record fields. We'll be discussing mutation someday
 soon.)
 
-As we proceed, we'll be seeing a variety of other monad systems. For example, another monad is the list monad. Here the monadic type is:
+As we proceed, we'll be seeing a variety of other monad systems. For example, another monad is the List monad. Here the monadic type is:
 
        # type 'a list
 
@@ -346,7 +345,7 @@ of `'b list`s into a single `'b list`:
        # List.concat [[1]; [1;2]; [1;3]; [1;2;4]]
        - : int list = [1; 1; 2; 1; 3; 1; 2; 4]
 
-So now we've seen two monads: the option/maybe monad, and the list monad. For any
+So now we've seen two monads: the Option/Maybe monad, and the List monad. For any
 monadic system, there has to be a specification of the complex monad type,
 which will be parameterized on some simpler type `'a`, and the `unit`/return
 operation, and the `bind` operation. These will be different for different
@@ -366,7 +365,7 @@ Just like good robots, monads must obey three laws designed to prevent
 them from hurting the people that use them or themselves.
 
 *      **Left identity: unit is a left identity for the bind operation.**
-       That is, for all `f:'a -> 'a m`, where `'a m` is a monadic
+       That is, for all `f:'a -> 'b m`, where `'b m` is a monadic
        type, we have `(unit x) >>= f == f x`.  For instance, `unit` is itself
        a function of type `'a -> 'a m`, so we can use it for `f`:
 
@@ -378,13 +377,16 @@ them from hurting the people that use them or themselves.
        The parentheses is the magic for telling OCaml that the
        function to be defined (in this case, the name of the function
        is `>>=`, pronounced "bind") is an infix operator, so we write
-       `u >>= f` or equivalently `( >>= ) u f` instead of `>>= u f`. Now:
+       `u >>= f` or equivalently `( >>= ) u f` instead of `>>= u
+       f`.
 
                # unit 2;;
                - : int option = Some 2
                # unit 2 >>= unit;;
                - : int option = Some 2
 
+       Now, for a less trivial instance of a function from `int`s to `int option`s:
+
                # let divide x y = if 0 = y then None else Some (x/y);;
                val divide : int -> int -> int option = <fun>
                # divide 6 2;;
@@ -400,12 +402,19 @@ them from hurting the people that use them or themselves.
 
 *      **Associativity: bind obeys a kind of associativity**. Like this:
 
-               (u >>= f) >>= g == u >>= (fun x -> f x >>= g)
+               (u >>= f) >>= g  ==  u >>= (fun x -> f x >>= g)
+
+       If you don't understand why the lambda form is necessary (the
+       "fun x -> ..." part), you need to look again at the type of `bind`.
 
-       If you don't understand why the lambda form is necessary (the "fun
-       x" part), you need to look again at the type of `bind`.
+       Wadler and others try to make this look nicer by phrasing it like this,
+       where U, V, and W are schematic for any expressions with the relevant monadic type:
 
-       Some examples of associativity in the option monad:
+               (U >>= fun x -> V) >>= fun y -> W  ==  U >>= fun x -> (V >>= fun y -> W)
+
+       Some examples of associativity in the Option monad (bear in
+       mind that in the Ocaml implementation of integer division, 2/3
+       evaluates to zero, throwing away the remainder):
 
                # Some 3 >>= unit >>= unit;; 
                - : int option = Some 3
@@ -422,15 +431,15 @@ them from hurting the people that use them or themselves.
                # Some 3 >>= (fun x -> divide 2 x >>= divide 6);;
                - : int option = None
 
-Of course, associativity must hold for *arbitrary* functions of
-type `'a -> 'a m`, where `m` is the monad type.  It's easy to
-convince yourself that the `bind` operation for the option monad
-obeys associativity by dividing the inputs into cases: if `u`
-matches `None`, both computations will result in `None`; if
-`u` matches `Some x`, and `f x` evalutes to `None`, then both
-computations will again result in `None`; and if the value of
-`f x` matches `Some y`, then both computations will evaluate
-to `g y`.
+       Of course, associativity must hold for *arbitrary* functions of
+       type `'a -> 'b m`, where `m` is the monad type.  It's easy to
+       convince yourself that the `bind` operation for the Option monad
+       obeys associativity by dividing the inputs into cases: if `u`
+       matches `None`, both computations will result in `None`; if
+       `u` matches `Some x`, and `f x` evalutes to `None`, then both
+       computations will again result in `None`; and if the value of
+       `f x` matches `Some y`, then both computations will evaluate
+       to `g y`.
 
 *      **Right identity: unit is a right identity for bind.**  That is, 
        `u >>= unit == u` for all monad objects `u`.  For instance,
@@ -447,41 +456,47 @@ More details about monads
 If you studied algebra, you'll remember that a *monoid* is an
 associative operation with a left and right identity.  For instance,
 the natural numbers along with multiplication form a monoid with 1
-serving as the left and right identity.  That is, temporarily using
-`*` to mean arithmetic multiplication, `1 * u == u == u * 1` for all
+serving as the left and right identity.  That is, `1 * u == u == u * 1` for all
 `u`, and `(u * v) * w == u * (v * w)` for all `u`, `v`, and `w`.  As
 presented here, a monad is not exactly a monoid, because (unlike the
 arguments of a monoid operation) the two arguments of the bind are of
 different types.  But it's possible to make the connection between
 monads and monoids much closer. This is discussed in [Monads in Category
-Theory](/advanced_notes/monads_in_category_theory).
-See also <http://www.haskell.org/haskellwiki/Monad_Laws>.
+Theory](/advanced_topics/monads_in_category_theory).
+
+See also:
+
+*      [Haskell wikibook on Monad Laws](http://www.haskell.org/haskellwiki/Monad_Laws).
+*      [Yet Another Haskell Tutorial on Monad Laws](http://en.wikibooks.org/wiki/Haskell/YAHT/Monads#Definition)
+*      [Haskell wikibook on Understanding Monads](http://en.wikibooks.org/wiki/Haskell/Understanding_monads)
+*      [Haskell wikibook on Advanced Monads](http://en.wikibooks.org/wiki/Haskell/Advanced_monads)
+*      [Haskell wikibook on do-notation](http://en.wikibooks.org/wiki/Haskell/do_Notation)
+*      [Yet Another Haskell Tutorial on do-notation](http://en.wikibooks.org/wiki/Haskell/YAHT/Monads#Do_Notation)
+
 
 Here are some papers that introduced monads into functional programming:
 
-*      [Eugenio Moggi, Notions of Computation and Monads](http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf): Information and Computation 93 (1) 1991.
+*      [Eugenio Moggi, Notions of Computation and Monads](http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf): Information and Computation 93 (1) 1991. Would be very difficult reading for members of this seminar. However, the following two papers should be accessible.
+
+*      [Philip Wadler. The essence of functional programming](http://homepages.inf.ed.ac.uk/wadler/papers/essence/essence.ps):
+invited talk, *19'th Symposium on Principles of Programming Languages*, ACM Press, Albuquerque, January 1992.
+<!--   This paper explores the use monads to structure functional programs. No prior knowledge of monads or category theory is required.
+       Monads increase the ease with which programs may be modified. They can mimic the effect of impure features such as exceptions, state, and continuations; and also provide effects not easily achieved with such features. The types of a program reflect which effects occur.
+       The first section is an extended example of the use of monads. A simple interpreter is modified to support various extra features: error messages, state, output, and non-deterministic choice. The second section describes the relation between monads and continuation-passing style. The third section sketches how monads are used in a compiler for Haskell that is written in Haskell.-->
 
 *      [Philip Wadler. Monads for Functional Programming](http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf):
 in M. Broy, editor, *Marktoberdorf Summer School on Program Design
 Calculi*, Springer Verlag, NATO ASI Series F: Computer and systems
 sciences, Volume 118, August 1992. Also in J. Jeuring and E. Meijer,
 editors, *Advanced Functional Programming*, Springer Verlag, 
-LNCS 925, 1995. Some errata fixed August 2001.  This paper has a great first
-line: **Shall I be pure, or impure?**
+LNCS 925, 1995. Some errata fixed August 2001.
 <!--   The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or non-determinism. Three case studies are looked at in detail: how monads ease the modification of a simple evaluator; how monads act as the basis of a datatype of arrays subject to in-place update; and how monads can be used to build parsers.-->
 
-*      [Philip Wadler. The essence of functional programming](http://homepages.inf.ed.ac.uk/wadler/papers/essence/essence.ps):
-invited talk, *19'th Symposium on Principles of Programming Languages*, ACM Press, Albuquerque, January 1992.
-<!--   This paper explores the use monads to structure functional programs. No prior knowledge of monads or category theory is required.
-       Monads increase the ease with which programs may be modified. They can mimic the effect of impure features such as exceptions, state, and continuations; and also provide effects not easily achieved with such features. The types of a program reflect which effects occur.
-       The first section is an extended example of the use of monads. A simple interpreter is modified to support various extra features: error messages, state, output, and non-deterministic choice. The second section describes the relation between monads and continuation-passing style. The third section sketches how monads are used in a compiler for Haskell that is written in Haskell.-->
-
-*      [Daniel Friedman. A Schemer's View of Monads](/schemersviewofmonads.ps): from <https://www.cs.indiana.edu/cgi-pub/c311/doku.php?id=home> but the link above is to a local copy.
 
-There's a long list of monad tutorials on the [[Offsite Reading]] page. Skimming the titles makes me laugh.
+There's a long list of monad tutorials on the [[Offsite Reading]] page. (Skimming the titles is somewhat amusing.) If you are confused by monads, make use of these resources. Read around until you find a tutorial pitched at a level that's helpful for you.
 
 In the presentation we gave above---which follows the functional programming conventions---we took `unit`/return and `bind` as the primitive operations. From these a number of other general monad operations can be derived. It's also possible to take some of the others as primitive. The [Monads in Category
-Theory](/advanced_notes/monads_in_category_theory) notes do so, for example.
+Theory](/advanced_topics/monads_in_category_theory) notes do so, for example.
 
 Here are some of the other general monad operations. You don't have to master these; they're collected here for your reference.
 
@@ -499,12 +514,12 @@ that is:
 
 You could also do `bind u (fun x -> v)`; we use the `_` for the function argument to be explicit that that argument is never going to be used.
 
-The `lift` operation we asked you to define for last week's homework is a common operation. The second argument to `bind` converts `'a` values into `'b m` values---that is, into instances of the monadic type. What if we instead had a function that merely converts `'a` values into `'b` values, and we want to use it with our monadic type. Then we "lift" that function into an operation on the monad. For example:
+The `lift` operation we asked you to define for last week's homework is a common operation. The second argument to `bind` converts `'a` values into `'b m` values---that is, into instances of the monadic type. What if we instead had a function that merely converts `'a` values into `'b` values, and we want to use it with our monadic type? Then we "lift" that function into an operation on the monad. For example:
 
        # let even x = (x mod 2 = 0);;
        val g : int -> bool = <fun>
 
-`even` has the type `int -> bool`. Now what if we want to convert it into an operation on the option/maybe monad?
+`even` has the type `int -> bool`. Now what if we want to convert it into an operation on the Option/Maybe monad?
 
        # let lift g = fun u -> bind u (fun x -> Some (g x));;
        val lift : ('a -> 'b) -> 'a option -> 'b option = <fun>
@@ -517,7 +532,7 @@ also define a lift operation for binary functions:
 
 `lift2 (+)` will now be a function from `int option`s  and `int option`s to `int option`s. This should look familiar to those who did the homework.
 
-The `lift` operation (just `lift`, not `lift2`) is sometimes also called the `map` operation. (In Haskell, they say `fmap` or `<$>`.) And indeed when we're working with the list monad, `lift f` is exactly `List.map f`!
+The `lift` operation (just `lift`, not `lift2`) is sometimes also called the `map` operation. (In Haskell, they say `fmap` or `<$>`.) And indeed when we're working with the List monad, `lift f` is exactly `List.map f`!
 
 Wherever we have a well-defined monad, we can define a lift/map operation for that monad. The examples above used `Some (g x)` and so on; in the general case we'd use `unit (g x)`, using the specific `unit` operation for the monad we're working with.
 
@@ -544,7 +559,7 @@ and so on. Here are the laws that any `ap` operation can be relied on to satisfy
        ap (unit f) (unit x) = unit (f x)
        ap u (unit x) = ap (unit (fun f -> f x)) u
 
-Another general monad operation is called `join`. This is the operation that takes you from an iterated monad to a single monad. Remember when we were explaining the `bind` operation for the list monad, there was a step where
+Another general monad operation is called `join`. This is the operation that takes you from an iterated monad to a single monad. Remember when we were explaining the `bind` operation for the List monad, there was a step where
 we went from:
 
        [[1]; [1;2]; [1;3]; [1;2;4]]
@@ -574,15 +589,15 @@ Monad outlook
 -------------
 
 We're going to be using monads for a number of different things in the
-weeks to come.  The first main application will be the State monad,
+weeks to come.  One major application will be the State monad,
 which will enable us to model mutation: variables whose values appear
 to change as the computation progresses.  Later, we will study the
 Continuation monad.
 
-In the meantime, we'll look at several linguistic applications for monads, based
-on what's called the *reader monad*.
+But first, we'll look at several linguistic applications for monads, based
+on what's called the *Reader monad*.
 
-##[[Reader monad]]##
+##[[Reader Monad for Variable Binding]]##
 
-##[[Intensionality monad]]##
+##[[Reader Monad for Intensionality]]##