edits
[lambda.git] / week11.mdwn
index 2b75e25..1857d8b 100644 (file)
@@ -253,7 +253,8 @@ We haven't given you a real implementation of the tree zipper, but only a sugges
 *      Huet, Gerard. ["Functional Pearl: The Zipper"](http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf) Journal of Functional Programming 7 (5): 549-554, September 1997.
 *      As always, [Oleg](http://okmij.org/ftp/continuations/Continuations.html#zipper) takes this a few steps deeper.
 
-##Same-fringe using a tree zipper##
+
+##Same-fringe using a zipper-based coroutine##
 
 Recall back in [[Assignment4]], we asked you to enumerate the "fringe" of a leaf-labeled tree. Both of these trees (here I *am* drawing the labels in the diagram):
 
@@ -472,6 +473,221 @@ If you want to read more about these kinds of threads, here are some links:
 
 The way we built cooperative threads here crucially relied on two heavyweight tools. First, it relied on our having a data structure (the tree zipper) capable of being a static snapshot of where we left off in the tree whose fringe we're enumerating. Second, it relied on our using mutable reference cells so that we could update what the current snapshot (that is, tree zipper) was, so that the next invocation of the `next_leaf` function could start up again where the previous invocation left off.
 
+It's possible to build cooperative threads without using those tools, however. Some languages have a native syntax for them. Here's how we'd write the same-fringe solution above using native coroutines in the language Lua:
+
+       > function fringe_enumerator (tree)
+           if tree.leaf then
+               coroutine.yield (tree.leaf)
+           else
+               fringe_enumerator (tree.left)
+               fringe_enumerator (tree.right)
+           end
+       end
+       
+       > function same_fringe (tree1, tree2)
+           local next1 = coroutine.wrap (fringe_enumerator)
+           local next2 = coroutine.wrap (fringe_enumerator)
+           local function loop (leaf1, leaf2)
+               if leaf1 or leaf2 then
+                   return leaf1 == leaf2 and loop( next1(), next2() )
+               elseif not leaf1 and not leaf2 then
+                   return true
+               else
+                   return false
+               end
+           end
+           return loop (next1(tree1), next2(tree2))
+       end
+       
+       > return same_fringe ( {leaf=1}, {leaf=2})
+       false
+       
+       > return same_fringe ( {leaf=1}, {leaf=1})
+       true
+       
+       > return same_fringe ( {left = {leaf=1}, right = {left = {leaf=2}, right = {leaf=3}}},
+           {left = {left = {leaf=1}, right = {leaf=2}}, right = {leaf=3}} )
+       true
+
+We're going to think about the underlying principles to this execution pattern, and instead learn how to implement it from scratch---without necessarily having zippers to rely on.
+
+
+##Exceptions and Aborts##
+
+To get a better understanding of how that execution patter works, we'll add yet a second execution pattern to our plate, and then think about what they have in common.
+
+While writing OCaml code, you've probably come across errors. In fact, you've probably come across errors of two sorts. One sort of error comes about when you've got syntax errors or type errors and the OCaml interpreter isn't even able to understand your code:
+
+       # let lst = [1; 2] in
+         "a" :: lst;;
+       Error: This expression has type int list
+                  but an expression was expected of type string list
+
+But you may also have encountered other kinds of error, that arise while your program is running. For example:
+
+       # 1/0;;
+       Exception: Division_by_zero.
+       # List.nth [1;2] 10;;
+       Exception: Failure "nth".
+
+These "Exceptions" are **run-time errors**. OCaml will automatically detect some of them, like when you attempt to divide by zero. Other exceptions are *raised* by code. For instance, here is the implementation of `List.nth`:
+
+       let nth l n =
+         if n < 0 then invalid_arg "List.nth" else
+         let rec nth_aux l n =
+               match l with
+               | [] -> failwith "nth"
+               | a::l -> if n = 0 then a else nth_aux l (n-1)
+         in nth_aux l n
+
+Notice the two clauses `invalid_arg "List.nth"` and `failwith "nth"`. These are two helper functions which are shorthand for:
+
+       raise (Invalid_argument "List.nth");;
+       raise (Failure "nth");;
+
+where `Invalid_argument "List.nth"` is a value of type `exn`, and so too `Failure "nth"`. When you have some value `ex` of type `exn` and evaluate the expression:
+
+       raise ex
+
+the effect is for the program to immediately stop without evaluating any further code:
+
+       # let xcell = ref 0;;
+       val xcell : int ref = {contents = 0}
+       # let ex = Failure "test"
+         in let _ = raise ex
+         in xcell := 1;;
+       Exception: Failure "test".
+       # !xcell;;
+       - : int = 0
+
+Notice that the line `xcell := 1` was never evaluated, so the contents of `xcell` are still `0`.
+
+I said when you evaluate the expression:
+
+       raise ex
+
+the effect is for the program to immediately stop. That's not exactly true. You can also programmatically arrange to *catch* errors, without the program necessarily stopping. In OCaml we do that with a `try ... with PATTERN -> ...` construct, analogous to the `match ... with PATTERN -> ...` construct:
+
+       # let foo x =
+           try
+               if x = 1 then 10
+               else if x = 2 then raise (Failure "two")
+               else raise (Failure "three")
+           with Failure "two" -> 20
+           ;;
+       val foo : int -> int = <fun>
+       # foo 1;;
+       - : int = 10
+       # foo 2;;
+       - : int = 20
+       # foo 3;;
+       Exception: Failure "three".
+
+Notice what happens here. If we call `foo 1`, then the code between `try` and `with` evaluates to `10`, with no exceptions being raised. That then is what the entire `try ... with ...` block evaluates to; and so too what `foo 1` evaluates to. If we call `foo 2`, then the code between `try` and `with` raises an exception `Failure "two"`. The pattern in the `with` clause matches that exception, so we get instead `20`. If we call `foo 3`, we again raise an exception. This exception isn't matched by the `with` block, so it percolates up to the top of the program, and then the program immediately stops.
+
+So what I should have said is that when you evaluate the expression:
+
+       raise ex
+
+*and that exception is never caught*, then the effect is for the program to immediately stop.
+
+Of course, it's possible to handle errors in other ways too. There's no reason why the implementation of `List.nth` *had* to do things this way. They might instead have returned `Some a` when the list had an nth member `a`, and `None` when it does not. But it's pedagogically useful for us to think about this pattern now.
+
+When an exception is raised, it percolates up through the code that called it, until it finds a surrounding `try ... with ...` that matches it. That might not be the first `try ... with ...` that it encounters. For example:
+
+       # try
+           try
+               raise (Failure "blah")
+           with Failure "fooey" -> 10
+         with Failure "blah" -> 20;;
+       - : int = 20
+
+The matching `try ... with ...` block need not *lexically surround* the site where the error was raised:
+
+       # let foo b x =
+           try
+               b x
+           with Failure "blah" -> 20
+       in let bar x =
+           raise (Failure "blah")
+       in foo bar 0;;
+       - : int = 20
+
+Here we call `foo bar 0`, and `foo` in turn calls `bar 0`, and `bar` raises the exception. Since there's no matching `try ... with ...` block in `bar`, we percolate back up the history of *who called this function?* and find a matching `try ... with ...` block in `foo`. This catches the error and so then the `try ... with ...` block in `foo` that called `bar` in the first place will evaluate to `20`.
+
+OK, now this exception-handling apparatus does exemplify the second execution pattern we want to focus on. But it may bring it into clearer focus if we simplify the pattern even more. Imagine we could write code like this instead:
+
+       # let foo x =
+           try
+               (if x = 1 then 10
+               else abort 20) + 1
+           end
+           ;;
+
+then if we called `foo 1`, we'd get the result `11`. If we called `foo 2`, on the other hand, we'd get `20` (note, not `21`). This exemplifies the same interesting "jump out of this part of the code" behavior that the `try ... raise ... with ...` code does, but without the details of matching which exception was raised, and handling the exception to produce a new result.
+
+Many programming languages have this simplified exceution pattern, either instead of or alongside a `try ... with ...`-like pattern. In Lua and many other languages, `abort` is instead called `return`. The preceding example would be written:
+
+       > function foo(x)
+           local value
+           if (x == 1) then
+               value = 10
+           else
+               return 20
+           end
+           return value + 1
+       end
+       
+       > return foo(1)
+       11
+       
+       > return foo(2)
+       20
+
+Okay, so that's our second execution pattern.
+
+##What do these have in common?##
+
+In both of these patterns, we need to have some way to take a snapshot of where we are in the evaluation of a complex piece of code, so that we might later resume execution at that point. In the coroutine example, the two threads need to have a snapshot of where they were in the enumeration of their tree's leaves. In the abort example, we need to have a snapshot of where to pick up again if some embedded piece of code aborts. Sometimes we might distill that snapshot into a datastructure like a zipper. But we might not always know how to do so; and learning how to think about these snapshots without the help of zippers will help us see patterns and similarities we might otherwise miss.
+
+A more general way to think about these snapshots is to think of the code we're taking a snapshot of as a *function.* For example, in this code:
+
+       let foo x =
+           try
+               (if x = 1 then 10
+               else abort 20) + 1
+           end
+       in (foo 2) + 1;;
+
+we can imagine a box:
+
+       let foo x =
+       +---------------------------+
+       |   try                     |
+       |       (if x = 1 then 10   |
+       |       else abort 20) + 1  |
+       |   end                     |
+       +---------------------------+
+       in (foo 2) + 1;;
+
+and as we're about to enter the box, we want to take a snapshot of the code *outside* the box. If we decide to abort, we'd be aborting to that snapshotted code.
+
+<!--
+# #require "delimcc";;
+# open Delimcc;;
+# let reset body = let p = new_prompt () in push_prompt p (body p);;
+val reset : ('a Delimcc.prompt -> unit -> 'a) -> 'a = <fun>
+# let foo x = reset(fun p () -> (shift p (fun k -> if x = 1 then k 10 else 20)) + 1) in (foo 1) + 100;;
+- : int = 111
+# let foo x = reset(fun p () -> (shift p (fun k -> if x = 1 then k 10 else 20)) + 1) in (foo 2) + 100;;
+- : int = 120
+-->
+
+
+
+
+--------------------------------------
+
 In coming weeks, we'll learn about a different way to create threads, that relies on **continuations** rather than on those two tools. All of these tools are inter-related. As Oleg says, "Zipper can be viewed as a delimited continuation reified as a data structure." These different tools are also inter-related with monads. Many of these tools can be used to define the others. We'll explore some of the connections between them in the remaining weeks, but we encourage you to explore more.
 
 
@@ -615,13 +831,15 @@ Aparently, this task, as simple as it is, is a form of computation,
 and the order in which the `'S'`s get evaluated can lead to divergent
 behavior.
 
-For now, we'll agree to always evaluate the leftmost `'S'`.
+For now, we'll agree to always evaluate the leftmost `'S'`, which
+guarantees termination, and a final string without any `'S'` in it.
 
 This is a task well-suited to using a zipper.  We'll define a function
-`tz`, which accomplished the task by mapping a char list zipper to a
-char list.  We'll call the two parts of the zipper `unzipped` and
-`zipped`; we start with a fully zipped list, and move elements to the
-zipped part by pulling the zipped down until the zipped part is empty.
+`tz` (for task with zippers), which accomplishes the task by mapping a
+char list zipper to a char list.  We'll call the two parts of the
+zipper `unzipped` and `zipped`; we start with a fully zipped list, and
+move elements to the zipped part by pulling the zipped down until the
+entire list has been unzipped (and so the zipped half of the zipper is empty).
 
 <pre>
 type 'a list_zipper = ('a list) * ('a list);;
@@ -642,13 +860,13 @@ Note that this implementation enforces the evaluate-leftmost rule.
 Task completed.
 
 One way to see exactly what is going on is to watch the zipper in
-action by tracing the execution of `t1`.  By using the `#trace`
+action by tracing the execution of `tz`.  By using the `#trace`
 directive in the Ocaml interpreter, the system will print out the
-arguments to `t1` each time it is (recurcively) called.  Note that the
+arguments to `tz` each time it is (recurcively) called.  Note that the
 lines with left-facing arrows (`<--`) show (recursive) calls to `tz`,
 giving the value of its argument (a zipper), and the lines with
 right-facing arrows (`-->`) show the output of each recursive call, a
-list.  
+simple list.  
 
 <pre>
 # #trace tz;;
@@ -685,15 +903,16 @@ The recipe for constructing the list goes like this:
 -----------------------------------------
 (3)  make a new list whose first element is 'b' and whose tail is the list constructed in step (2)
 (4)  make a new list whose first element is 'a' and whose tail is the list constructed in step (3)
-<pre>
+</pre>
 
 What is the type of each of these steps?  Well, it will be a function
 from the result of the previous step (a list) to a new list: it will
 be a function of type `char list -> char list`.  We'll call each step
-a **continuation** of the recipe.  So in this context, a continuation
-is a function of type `char list -> char list`.  For instance, the
-continuation corresponding to the portion of the recipe below the
-horizontal line is the function `fun (tail:char list) -> a::(b::tail)`.
+(or group of steps) a **continuation** of the recipe.  So in this
+context, a continuation is a function of type `char list -> char
+list`.  For instance, the continuation corresponding to the portion of
+the recipe below the horizontal line is the function `fun (tail:char
+list) -> a::(b::tail)`.
 
 This means that we can now represent the unzipped part of our
 zipper--the part we've already unzipped--as a continuation: a function
@@ -701,9 +920,15 @@ describing how to finish building the list.  We'll write a new
 function, `tc` (for task with continuations), that will take an input
 list (not a zipper!) and a continuation and return a processed list.
 The structure and the behavior will follow that of `tz` above, with
-some small but interesting differences:
+some small but interesting differences.  We've included the orginal
+`tz` to facilitate detailed comparison:
 
 <pre>
+let rec tz (z:char list_zipper) = 
+    match z with (unzipped, []) -> List.rev(unzipped) (* Done! *)
+               | (unzipped, 'S'::zipped) -> tz ((List.append unzipped unzipped), zipped) 
+               | (unzipped, target::zipped) -> tz (target::unzipped, zipped);; (* Pull zipper *)
+
 let rec tc (l: char list) (c: (char list) -> (char list)) =
   match l with [] -> List.rev (c [])
              | 'S'::zipped -> tc zipped (fun x -> c (c x))
@@ -730,52 +955,57 @@ what the parallel would suggest.  The reason is that `unzipped` is a
 list, but `c` is a function.  That's the most crucial difference, the
 point of the excercise, and it should be emphasized.  For instance,
 you can see this difference in the fact that in `tz`, we have to glue
-together the two instances of `unzipped` with an explicit `List.append`.
+together the two instances of `unzipped` with an explicit (and
+relatively inefficient) `List.append`.
 In the `tc` version of the task, we simply compose `c` with itself: 
 `c o c = fun x -> c (c x)`.
 
 Why use the identity function as the initial continuation?  Well, if
-you have already constructed the list "abSd", what's the next step in
-the recipe to produce the desired result (which is the same list,
-"abSd")?  Clearly, the identity continuation.
+you have already constructed the initial list `"abSd"`, what's the next
+step in the recipe to produce the desired result, i.e, the very same
+list, `"abSd"`?  Clearly, the identity continuation.
 
 A good way to test your understanding is to figure out what the
 continuation function `c` must be at the point in the computation when
-`tc` is called with 
+`tc` is called with the first argument `"Sd"`.  Two choices: is it
+`fun x -> a::b::x`, or it is `fun x -> b::a::x`?  The way to see if
+you're right is to execute the following command and see what happens:
+
+    tc ['S'; 'd'] (fun x -> 'a'::'b'::x);;
 
 There are a number of interesting directions we can go with this task.
-The task was chosen because the computation can be viewed as a
+The reason this task was chosen is because it can be viewed as a
 simplified picture of a computation using continuations, where `'S'`
 plays the role of a control operator with some similarities to what is
-often called `shift`.  &sset; &integral; In the analogy, the list
-portrays a string of functional applications, where `[f1; f2; f3; x]`
-represents `f1(f2(f3 x))`.  The limitation of the analogy is that it
-is only possible to represent computations in which the applications
-are always right-branching, i.e., the computation `((f1 f2) f3) x`
-cannot be directly represented.
+often called `shift`.  In the analogy, the input list portrays a
+sequence of functional applications, where `[f1; f2; f3; x]` represents
+`f1(f2(f3 x))`.  The limitation of the analogy is that it is only
+possible to represent computations in which the applications are
+always right-branching, i.e., the computation `((f1 f2) f3) x` cannot
+be directly represented.
 
 One possibile development is that we could add a special symbol `'#'`,
 and then the task would be to copy from the target `'S'` only back to
 the closest `'#'`.  This would allow the task to simulate delimited
-continuations (for right-branching computations).
+continuations with embedded prompts.
 
-The task is well-suited to the list zipper because the list monad has
-an intimate connection with continuations.  The following section
-makes this connection.  We'll return to the list task after talking
-about generalized quantifiers below.
+The reason the task is well-suited to the list zipper is in part
+because the list monad has an intimate connection with continuations.
+The following section explores this connection.  We'll return to the
+list task after talking about generalized quantifiers below.
 
 
 Rethinking the list monad
 -------------------------
 
 To construct a monad, the key element is to settle on a type
-constructor, and the monad naturally follows from that.  We'll remind
-you of some examples of how monads follow from the type constructor in
-a moment.  This will involve some review of familair material, but
-it's worth doing for two reasons: it will set up a pattern for the new
-discussion further below, and it will tie together some previously
-unconnected elements of the course (more specifically, version 3 lists
-and monads).
+constructor, and the monad more or less naturally follows from that.
+We'll remind you of some examples of how monads follow from the type
+constructor in a moment.  This will involve some review of familair
+material, but it's worth doing for two reasons: it will set up a
+pattern for the new discussion further below, and it will tie together
+some previously unconnected elements of the course (more specifically,
+version 3 lists and monads).
 
 For instance, take the **Reader Monad**.  Once we decide that the type
 constructor is
@@ -786,17 +1016,19 @@ then the choice of unit and bind is natural:
 
     let r_unit (a : 'a) : 'a reader = fun (e : env) -> a
 
-Since the type of an `'a reader` is `env -> 'a` (by definition),
-the type of the `r_unit` function is `'a -> env -> 'a`, which is a
-specific case of the type of the *K* combinator.  So it makes sense
-that *K* is the unit for the reader monad.
+The reason this is a fairly natural choice is that because the type of
+an `'a reader` is `env -> 'a` (by definition), the type of the
+`r_unit` function is `'a -> env -> 'a`, which is an instance of the
+type of the *K* combinator.  So it makes sense that *K* is the unit
+for the reader monad.
 
 Since the type of the `bind` operator is required to be
 
     r_bind : ('a reader) -> ('a -> 'b reader) -> ('b reader)
 
-We can reason our way to the correct `bind` function as follows. We
-start by declaring the types determined by the definition of a bind operation:
+We can reason our way to the traditional reader `bind` function as
+follows. We start by declaring the types determined by the definition
+of a bind operation:
 
     let r_bind (u : 'a reader) (f : 'a -> 'b reader) : ('b reader) = ...
 
@@ -805,19 +1037,26 @@ feed it to `f`.  Since `u` is a function from environments to
 objects of type `'a`, the way we open a box in this monad is
 by applying it to an environment:
 
+<pre>
        ... f (u e) ...
+</pre>
 
 This subexpression types to `'b reader`, which is good.  The only
-problem is that we invented an environment `e` that we didn't already have ,
-so we have to abstract over that variable to balance the books:
+problem is that we made use of an environment `e` that we didn't already have,
+so we must abstract over that variable to balance the books:
 
        fun e -> f (u e) ...
 
+[To preview the discussion of the Curry-Howard correspondence, what
+we're doing here is constructing an intuitionistic proof of the type,
+and using the Curry-Howard labeling of the proof as our bind term.]
+
 This types to `env -> 'b reader`, but we want to end up with `env ->
 'b`.  Once again, the easiest way to turn a `'b reader` into a `'b` is to apply it to an environment.  So we end up as follows:
 
-    r_bind (u : 'a reader) (f : 'a -> 'b reader) : ('b reader) =
-               f (u e) e         
+<pre>
+r_bind (u : 'a reader) (f : 'a -> 'b reader) : ('b reader) = f (u e) e         
+</pre>
 
 And we're done. This gives us a bind function of the right type. We can then check whether, in combination with the unit function we chose, it satisfies the monad laws, and behaves in the way we intend. And it does.
 
@@ -886,7 +1125,7 @@ so there's no obvious reason to prefer `fun x -> [x,x]`.  In other
 words, `fun x -> [x]` is a reasonable choice for a unit.
 
 As for bind, an `'a list` monadic object contains a lot of objects of
-type `'a`, and we want to make some use of each of them (rather than
+type `'a`, and we want to make use of each of them (rather than
 arbitrarily throwing some of them away).  The only
 thing we know for sure we can do with an object of type `'a` is apply
 the function of type `'a -> 'a list` to them.  Once we've done so, we
@@ -901,13 +1140,13 @@ choice of unit and bind for the list monad.
 
 Yet we can still desire to go deeper, and see if the appropriate bind
 behavior emerges from the types, as it did for the previously
-considered monads.  But we can't do that if we leave the list type 
-as a primitive Ocaml type.  However, we know several ways of implementing
+considered monads.  But we can't do that if we leave the list type as
+a primitive Ocaml type.  However, we know several ways of implementing
 lists using just functions.  In what follows, we're going to use type
-3 lists (the right fold implementation), though it's important to
-wonder how things would change if we used some other strategy for
-implementating lists.  These were the lists that made lists look like
-Church numerals with extra bits embdded in them:
+3 lists, the right fold implementation (though it's important and
+intriguing to wonder how things would change if we used some other
+strategy for implementating lists).  These were the lists that made
+lists look like Church numerals with extra bits embdded in them:
 
     empty list:                fun f z -> z
     list with one element:     fun f z -> f 1 z
@@ -991,7 +1230,7 @@ Now, we've used a `k` that we pulled out of nowhere, so we need to abstract over
 
        fun (k : 'c -> 'b -> 'b) -> u (fun (a : 'a) (b : 'b) -> f a k b)
 
-This whole expression has type `('c -> 'b -> 'b) -> 'b -> 'b`, which is exactly the type of a `('c, 'b) list'`. So we can hypothesize that we our bind is:
+This whole expression has type `('c -> 'b -> 'b) -> 'b -> 'b`, which is exactly the type of a `('c, 'b) list'`. So we can hypothesize that our bind is:
 
     l'_bind (u : ('a -> 'b -> 'b) -> 'b -> 'b)
             (f : 'a -> ('c -> 'b -> 'b) -> 'b -> 'b)
@@ -1100,7 +1339,7 @@ highly similar to the List monad just given:
        c_bind (u : ('a -> 'b) -> 'b) (f : 'a -> ('c -> 'd) -> 'd) : ('c -> 'd) -> 'd =
          fun (k : 'a -> 'b) -> u (fun (a : 'a) -> f a k)
 
-Note that `c_bind` is exactly the `gqize` function that Montague used
+Note that `c_unit` is exactly the `gqize` function that Montague used
 to lift individuals into the continuation monad.
 
 That last bit in `c_bind` looks familiar---we just saw something like
@@ -1131,7 +1370,7 @@ to monads that can be understood in terms of continuations?
 Manipulating trees with monads
 ------------------------------
 
-This thread develops an idea based on a detailed suggestion of Ken
+This topic develops an idea based on a detailed suggestion of Ken
 Shan's.  We'll build a series of functions that operate on trees,
 doing various things, including replacing leaves, counting nodes, and
 converting a tree to a list of leaves.  The end result will be an
@@ -1139,11 +1378,11 @@ application for continuations.
 
 From an engineering standpoint, we'll build a tree transformer that
 deals in monads.  We can modify the behavior of the system by swapping
-one monad for another.  (We've already seen how adding a monad can add
+one monad for another.  We've already seen how adding a monad can add
 a layer of funtionality without disturbing the underlying system, for
 instance, in the way that the reader monad allowed us to add a layer
 of intensionality to an extensional grammar, but we have not yet seen
-the utility of replacing one monad with other.)
+the utility of replacing one monad with other.
 
 First, we'll be needing a lot of trees during the remainder of the
 course.  Here's a type constructor for binary trees: