update week1 notes
[lambda.git] / week1.mdwn
index dffe060..c75da69 100644 (file)
@@ -99,15 +99,15 @@ Functions are another class of values we'll have in our language. They aren't "l
 
 I said we wanted to be starting with a fragment of arithmetic, so we'll keep the function values off-stage for the moment, and also all the symbolic atoms except for `'true` and `'false`. So we've got numbers, truth-values, and some functions and relations (that is, boolean functions) defined on them. We also help ourselves to a notion of bounded quantification, as in &forall;`x < M.` &phi;, where `M` and &phi; are (simple or complex) expressions that evaluate to a number and a boolean, respectively. We limit ourselves to *bounded* quantification so that the fragment we're dealing with can be "effectively" or mechanically decided. (As we extend the language, we will lose that property, but it will be a topic for later discussion exactly when that happens.)
 
-As I mentioned in class, I will sometimes write &forall; x : &psi; . &phi; in my informal metalanguage, where the &psi; clause represents the quantifier's *restrictor*. Other people write this like `[`&forall; x : &psi; `]` &phi;, or in various other ways. My notation is meant to parallel the notation some linguists (for example, Heim &amp; Kratzer) use in writing &lambda; x : &psi; . &phi;, where &psi;  clause restricts the range of arguments over which the function designated by the &lambda; expression is defined. Later we will see the colon used in a somewhat similar (but also somewhat different) way in our programming languages. But that's just foreshadowing.
+As I mentioned in class, I will sometimes write &forall; x : &psi; . &phi; in my informal metalanguage, where the &psi; clause represents the quantifier's *restrictor*. Other people write this like `[`&forall; x : &psi; `]` &phi;, or in various other ways. My notation is meant to parallel the notation some linguists (for example, Heim &amp; Kratzer) use in writing &lambda; x : &psi; . &phi;, where &psi;  clause restricts the range of arguments over which the function designated by the &lambda;-expression is defined. Later we will see the colon used in a somewhat similar (but also somewhat different) way in our programming languages. But that's just foreshadowing.
 
-So we have bounded quantification as in &forall; `x < 10.` &phi;. Obviously we could also make sense of &forall; `x == 5.` &phi; in just the same way. This would evaluate &phi; but with the variable `x` now bound to the value `5`, ignoring whatever it may be bound to in broader contexts. I will express this idea in a more perspicuous vocabulary, like this: `let x be 5 in` &phi;.
+So we have bounded quantification as in &forall; `x < 10.` &phi;. Obviously we could also make sense of &forall; `x == 5.` &phi; in just the same way. This would evaluate &phi; but with the variable `x` now bound to the value `5`, ignoring whatever it may be bound to in broader contexts. I will express this idea in a more perspicuous vocabulary, like this: `let x be 5 in` &phi;. (I say `be` rather than `=` because, as I mentioned before, it's too easy for the `=` sign to get used for too many subtly different jobs.)
 
 As one of you was quick to notice in class, though, when I shift to the `let`-vocabulary, I no longer restricted myself to just the case where &phi; evaluates to a boolean. I also permitted myself expressions like this:
 
     let x be 5 in x + 1
 
-which evaluates to `6`. Okay, fair enough, so I am moving beyond the &forall; `x==5.` &phi; idea when I do this. But the rule for how to interpret this are just a straightforward generalization of our existing understanding for how to interpret bound variables. So there's nothing fundamentally novel here.
+which evaluates to `6`. Okay, fair enough, so I am moving beyond the &forall; `x==5.` &phi; idea when I do this. But the rules for how to interpret this are just a straightforward generalization of our existing understanding for how to interpret bound variables. So there's nothing fundamentally novel here.
 
 We can have multiple `let`-expressions embedded, as in:
 
@@ -128,4 +128,18 @@ It's okay to also write it all inline, like so: `let x be 5; y be x + 1 in 2 * y
 
 The `x + 1` that is evaluated to give the value that `y` gets bound to uses the (more local) binding of `x` to `5`, not the (previous, less local) binding of `x` to `0`. By the way, the parentheses in that displayed expression were just to focus your attention. It would have parsed and meant the same without them.
 
+Now we can allow ourselves to introduce &lambda;-expressions in the following way. If a &lambda;-expression is applied to an argument, as in: `(`&lambda; `x.` &phi;`) M`, for any (simple or complex) expressions &phi; and `M`, this means the same as: `let x be M in` &phi;. That is, the argument to the &lambda;-expression provides (when evaluated) a value for the variable `x` to be bound to, and then the result of the whole thing is whatever &phi; evaluates to, under that binding to `x`.
+
+If we restricted ourselves to only that usage of &lambda;-expressions, that is when they were applied to all the arguments they're expecting, then we wouldn't have moved very far from the decidable fragment of arithmetic we began with.
+
+However, it's tempting to help ourselves to the notion (at least partly) *unapplied* &lambda;-expressions, too. If I can make sense of what:
+
+    (&lambda; x. x + 1) 5
+
+means, then I can make sense of what:
+
+    (&lambda; x. x + 1)
+
+means, too. It's just *the function* that waits for an argument and then returns the result of `x + 1` with `x` bound to that argument.
+
 *More to come.*