Merge branch 'pryor'
[lambda.git] / week1.mdwn
index a5e697a..09ad8bd 100644 (file)
@@ -34,233 +34,6 @@ From philosophy
 
 
 
-Basics of Lambda Calculus
-=========================
-
-The lambda calculus we'll be focusing on for the first part of the course has no types. (Some prefer to say it instead has a single type---but if you say that, you have to say that functions from this type to this type also belong to this type. Which is weird.)
-
-Here is its syntax:
-
-<blockquote>
-<strong>Variables</strong>: <code>x</code>, <code>y</code>, <code>z</code>...
-</blockquote>
-
-Each variable is an expression. For any expressions M and N and variable a, the following are also expressions:
-
-<blockquote>
-<strong>Abstract</strong>: <code>(&lambda;a M)</code>
-</blockquote>
-
-We'll tend to write <code>(&lambda;a M)</code> as just `(\a M)`, so we don't have to write out the markup code for the <code>&lambda;</code>. You can yourself write <code>(&lambda;a M)</code> or `(\a M)` or `(lambda a M)`.
-
-<blockquote>
-<strong>Application</strong>: <code>(M N)</code>
-</blockquote>
-
-Some authors reserve the term "term" for just variables and abstracts. We won't *participate* in that convention; we'll probably just say "term" and "expression" indiscriminately for expressions of any of these three forms.
-
-Examples of expressions:
-
-       x
-       (y x)
-       (x x)
-       (_x y)
-       (_x x)
-       (_x (_y x))
-       (x (_x x))
-       ((_x (x x)) (_x (x x)))
-
-The *lambda* calculus has an associated proof theory. For now, we can regard the proof theory as having just one rule, called the rule of **beta-reduction** or "beta-contraction". Suppose you have some expression of the form:
-
-       ((\a M) N)
-
-that is, an application of an abstract to some other expression. This compound form is called a **redex**, meaning it's a "beta-reducible expression." `(\a M)` is called the **head** of the redex; `N` is called the **argument**, and `M` is called the **body**.
-
-The rule of beta-reduction permits a transition from that expression to the following:
-
-       M [a:=N]
-
-What this means is just `M`, with any *free occurrences* inside `M` of the variable `a` replaced with the term `N`.
-
-What is a free occurrence?
-
->      An occurrence of a variable `a` is **bound** in T if T has the form `(\a N)`.
-
->      If T has the form `(M N)`, any occurrences of `a` that are bound in `M` are also bound in T, and so too any occurrences of `a` that are bound in `N`.
-
->      An occurrence of a variable is **free** if it's not bound.
-
-For instance:
-
-
->      T is defined to be `(x (\x (\y (x (y z)))))`
-
-The first occurrence of `x` in T is free.  The `\x` we won't regard as being an occurrence of `x`. The next occurrence of `x` occurs within a form that begins with `\x`, so it is bound as well. The occurrence of `y` is bound; and the occurrence of `z` is free.
-
-Here's an example of beta-reduction:
-
-       ((\x (y x)) z)
-
-beta-reduces to:
-
-       (y z)
-
-We'll write that like this:
-
-       ((\x (y x)) z) ~~> (y z)
-
-Different authors use different notations. Some authors use the term "contraction" for a single reduction step, and reserve the term "reduction" for the reflexive transitive closure of that, that is, for zero or more reduction steps. Informally, it seems easiest to us to say "reduction" for one or more reduction steps. So when we write:
-
-       M ~~> N
-
-We'll mean that you can get from M to N by one or more reduction steps. Hankin uses the symbol <code><big><big>&rarr;</big></big></code> for one-step contraction, and the symbol <code><big><big>&#8608;</big></big></code> for zero-or-more step reduction. Hindley and Seldin use <code><big><big><big>&#8883;</big></big></big><sub>1</sub></code> and <code><big><big><big>&#8883;</big></big></big></code>.
-
-When M and N are such that there's some P that M reduces to by zero or more steps, and that N also reduces to by zero or more steps, then we say that M and N are **beta-convertible**. We'll write that like this:
-
-       M <~~> N
-
-This is what plays the role of equality in the lambda calculus. Hankin uses the symbol `=` for this. So too do Hindley and Seldin. Personally, I keep confusing that with the relation to be described next, so let's use this notation instead. Note that `M <~~> N` doesn't mean that each of `M` and `N` are reducible to each other; that only holds when `M` and `N` are the same expression. (Or, with our convention of only saying "reducible" for one or more reduction steps, it never holds.)
-
-In the metatheory, it's also sometimes useful to talk about formulas that are syntactically equivalent *before any reductions take place*. Hankin uses the symbol <code>&equiv;</code> for this. So too do Hindley and Seldin. We'll use that too, and will avoid using `=` when discussing metatheory for the lambda calculus. Instead we'll use `<~~>` as we said above. When we want to introduce a stipulative definition, we'll write it out longhand, as in:
-
->      T is defined to be `(M N)`.
-
-We'll regard the following two expressions:
-
-       (\x (x y))
-
-       (\z (z y))
-
-as syntactically equivalent, since they only involve a typographic change of a bound variable. Read Hankin section 2.3 for discussion of different attitudes one can take about this.
-
-Note that neither of those expressions are identical to:
-
-       (\x (x w))
-
-because here it's a free variable that's been changed. Nor are they identical to:
-
-       (\y (y y))
-
-because here the second occurrence of `y` is no longer free.
-
-There is plenty of discussion of this, and the fine points of how substitution works, in Hankin and in various of the tutorials we've linked to about the lambda calculus. We expect you have a good intuitive understanding of what to do already, though, even if you're not able to articulate it rigorously.
-
-
-Shorthand
----------
-
-The grammar we gave for the lambda calculus leads to some verbosity. There are several informal conventions in widespread use, which enable the language to be written more compactly. (If you like, you could instead articulate a formal grammar which incorporates these additional conventions. Instead of showing it to you, we'll leave it as an exercise for those so inclined.)
-
-
-**Dot notation** Dot means "put a left paren here, and put the right
-paren as far the right as possible without creating unbalanced
-parentheses". So:
-
-       (\x (\y (x y)))
-
-can be abbreviated as:
-
-       (\x (\y. x y))
-
-and:
-
-       (\x (\y. (z y) z))
-
-would abbreviate:
-
-       (\x (\y ((z y) z)))
-
-This on the other hand:
-
-       (\x (\y. z y) z)
-
-would abbreviate:
-
-       (\x (\y (z y)) z)
-
-**Parentheses** Outermost parentheses around applications can be dropped. Moreover, applications will associate to the left, so `M N P` will be understood as `((M N) P)`. Finally, you can drop parentheses around abstracts, but not when they're part of an application. So you can abbreviate:
-
-       (\x. x y)
-
-as:
-
-       \x. x y
-
-but you should include the parentheses in:
-
-       (\x. x y) z
-
-and:
-
-       z (\x. x y)
-
-**Merging lambdas** An expression of the form `(\x (\y M))`, or equivalently, `(\x. \y. M)`, can be abbreviated as:
-
-       (\x y. M)
-
-Similarly, `(\x (\y (\z M)))` can be abbreviated as:
-
-       (\x y z. M)
-
-
-Lambda terms represent functions
---------------------------------
-
-All (recursively computable) functions can be represented by lambda
-terms (the untyped lambda calculus is Turing complete). For some lambda terms, it is easy to see what function they represent:
-
->      `(\x x)` represents the identity function: given any argument `M`, this function
-simply returns `M`: `((\x x) M) ~~> M`.
-
->      `(\x (x x))` duplicates its argument:
-`((\x (x x)) M) ~~> (M M)`
-
->      `(\x (\y x))` throws away its second argument:
-`(((\x (\y x)) M) N) ~~> M`
-
-and so on.
-
-It is easy to see that distinct lambda expressions can represent the same
-function, considered as a mapping from input to outputs. Obviously:
-
-       (\x x)
-
-and:
-
-       (\z z)
-
-both represent the same function, the identity function. However, we said above that we would be regarding these expressions as synactically equivalent, so they aren't yet really examples of *distinct* lambda expressions representing a single function. However, all three of these are distinct lambda expressions:
-
-       (\y x. y x) (\z z)
-
-       (\x. (\z z) x)
-
-       (\z z)
-
-yet when applied to any argument M, all of these will always return M. So they have the same extension. It's also true, though you may not yet be in a position to see, that no other function can differentiate between them when they're supplied as an argument to it. However, these expressions are all syntactically distinct.
-
-The first two expressions are *convertible*: in particular the first reduces to the second. So they can be regarded as proof-theoretically equivalent even though they're not syntactically identical. However, the proof theory we've given so far doesn't permit you to reduce the second expression to the third. So these lambda expressions are non-equivalent.
-
-There's an extension of the proof-theory we've presented so far which does permit this further move. And in that extended proof theory, all computable functions with the same extension do turn out to be equivalent (convertible). However, at that point, we still won't be working with the traditional mathematical notion of a function as a set of ordered pairs. One reason is that the latter but not the former permits uncomputable functions. A second reason is that the latter but not the former prohibits functions from applying to themselves. We discussed this some at the end of Monday's meeting (and further discussion is best pursued in person).
-
-
-
-Booleans and pairs
-==================
-
-Our definition of these is reviewed in [[Assignment1]].
-
-
-It's possible to do the assignment without using a Scheme interpreter, however
-you should take this opportunity to [get Scheme installed on your
-computer](/how_to_get_the_programming_languages_running_on_your_computer), and
-[get started learning Scheme](/learning_scheme). It will help you test out
-proposed answers to the assignment.
-
-
-
-
-
 
 Declarative/functional vs Imperatival/dynamic models of computation
 ===================================================================
@@ -281,19 +54,9 @@ The notion of **function** that we'll be working with will be one that, by defau
 
 It's possible to enhance the lambda calculus so that functions do get identified when they map all the same inputs to the same outputs. This is called making the calculus **extensional**. Church called languages which didn't do this **intensional**. If you try to understand that kind of "intensionality" in terms of functions from worlds to extensions (an idea also associated with Church), you may hurt yourself. So too if you try to understand it in terms of mental stereotypes, another notion sometimes designated by "intension."
 
-It's often said that dynamic systems are distinguished because they are the ones in which **order matters**. However, there are many ways in which order can matter. If we have a trivalent boolean system, for example---easily had in a purely functional calculus---we might choose to give a truth-table like this for "and":
-
-       true and true   = true
-       true and *      = *
-       true and false  = false
-       * and true      = *
-       * and *         = *
-       * and false     = *
-       false and true  = false
-       false and *     = false
-       false and false = false
+It's often said that dynamic systems are distinguished because they are the ones in which **order matters**. However, there are many ways in which order can matter. If we have a trivalent boolean system, for example---easily had in a purely functional calculus---we might choose  TODO
 
-And then we'd notice that `* and false` has a different intepretation than `false and *`. (The same phenomenon is already present with the mateial conditional in bivalent logics; but seeing that a non-symmetric semantics for `and` is available even for functional languages is instructive.)
+And then we'd notice that <code>* and false</code> has a different intepretation than <code>false and *</code>. (The same phenomenon is already present with the material conditional in bivalent logics; but seeing that a non-symmetric semantics for `and` is available even for functional languages is instructive.)
 
 Another way in which order can matter that's present even in functional languages is that the interpretation of some complex expressions can depend on the order in which sub-expressions are evaluated. Evaluated in one order, the computations might never terminate (and so semantically we interpret them as having "the bottom value"---we'll discuss this). Evaluated in another order, they might have a perfectly mundane value. Here's an example, though we'll reserve discussion of it until later:
 
@@ -485,7 +248,7 @@ Here's how it looks to say the same thing in various of these languages.
                          (let ((two 2))
                                   (+ three two)))
 
-       Scheme also has a simple `let` (without the `*`), and it permits you to group several variable bindings together in a single `let`- or `let*`-statement, like this:
+       Scheme also has a simple `let` (without the ` *`), and it permits you to group several variable bindings together in a single `let`- or `let*`-statement, like this:
 
                (let* ((three 3) (two 2))
                          (+ three two))
@@ -787,6 +550,234 @@ contributes no more to a larger context in which it's embedded than C does. This
 We'll discuss this more as the seminar proceeds.
 
 
+
+Basics of Lambda Calculus
+=========================
+
+The lambda calculus we'll be focusing on for the first part of the course has no types. (Some prefer to say it instead has a single type---but if you say that, you have to say that functions from this type to this type also belong to this type. Which is weird.)
+
+Here is its syntax:
+
+<blockquote>
+<strong>Variables</strong>: <code>x</code>, <code>y</code>, <code>z</code>...
+</blockquote>
+
+Each variable is an expression. For any expressions M and N and variable a, the following are also expressions:
+
+<blockquote>
+<strong>Abstract</strong>: <code>(&lambda;a M)</code>
+</blockquote>
+
+We'll tend to write <code>(&lambda;a M)</code> as just `(\a M)`, so we don't have to write out the markup code for the <code>&lambda;</code>. You can yourself write <code>(&lambda;a M)</code> or `(\a M)` or `(lambda a M)`.
+
+<blockquote>
+<strong>Application</strong>: <code>(M N)</code>
+</blockquote>
+
+Some authors reserve the term "term" for just variables and abstracts. We won't participate in that convention; we'll probably just say "term" and "expression" indiscriminately for expressions of any of these three forms.
+
+Examples of expressions:
+
+       x
+       (y x)
+       (x x)
+       (\x y)
+       (\x x)
+       (\x (\y x))
+       (x (\x x))
+       ((\x (x x)) (\x (x x)))
+
+The lambda calculus has an associated proof theory. For now, we can regard the proof theory as having just one rule, called the rule of **beta-reduction** or "beta-contraction". Suppose you have some expression of the form:
+
+       ((\a M) N)
+
+that is, an application of an abstract to some other expression. This compound form is called a **redex**, meaning it's a "beta-reducible expression." `(\a M)` is called the **head** of the redex; `N` is called the **argument**, and `M` is called the **body**.
+
+The rule of beta-reduction permits a transition from that expression to the following:
+
+       M [a:=N]
+
+What this means is just `M`, with any *free occurrences* inside `M` of the variable `a` replaced with the term `N`.
+
+What is a free occurrence?
+
+>      An occurrence of a variable `a` is **bound** in T if T has the form `(\a N)`.
+
+>      If T has the form `(M N)`, any occurrences of `a` that are bound in `M` are also bound in T, and so too any occurrences of `a` that are bound in `N`.
+
+>      An occurrence of a variable is **free** if it's not bound.
+
+For instance:
+
+
+>      T is defined to be `(x (\x (\y (x (y z)))))`
+
+The first occurrence of `x` in T is free.  The `\x` we won't regard as being an occurrence of `x`. The next occurrence of `x` occurs within a form that begins with `\x`, so it is bound as well. The occurrence of `y` is bound; and the occurrence of `z` is free.
+
+Here's an example of beta-reduction:
+
+       ((\x (y x)) z)
+
+beta-reduces to:
+
+       (y z)
+
+We'll write that like this:
+
+       ((\x (y x)) z) ~~> (y z)
+
+Different authors use different notations. Some authors use the term "contraction" for a single reduction step, and reserve the term "reduction" for the reflexive transitive closure of that, that is, for zero or more reduction steps. Informally, it seems easiest to us to say "reduction" for one or more reduction steps. So when we write:
+
+       M ~~> N
+
+We'll mean that you can get from M to N by one or more reduction steps. Hankin uses the symbol <code><big><big>&rarr;</big></big></code> for one-step contraction, and the symbol <code><big><big>&#8608;</big></big></code> for zero-or-more step reduction. Hindley and Seldin use <code><big><big><big>&#8883;</big></big></big><sub>1</sub></code> and <code><big><big><big>&#8883;</big></big></big></code>.
+
+When M and N are such that there's some P that M reduces to by zero or more steps, and that N also reduces to by zero or more steps, then we say that M and N are **beta-convertible**. We'll write that like this:
+
+       M <~~> N
+
+This is what plays the role of equality in the lambda calculus. Hankin uses the symbol `=` for this. So too do Hindley and Seldin. Personally, I keep confusing that with the relation to be described next, so let's use this notation instead. Note that `M <~~> N` doesn't mean that each of `M` and `N` are reducible to each other; that only holds when `M` and `N` are the same expression. (Or, with our convention of only saying "reducible" for one or more reduction steps, it never holds.)
+
+In the metatheory, it's also sometimes useful to talk about formulas that are syntactically equivalent *before any reductions take place*. Hankin uses the symbol <code>&equiv;</code> for this. So too do Hindley and Seldin. We'll use that too, and will avoid using `=` when discussing metatheory for the lambda calculus. Instead we'll use `<~~>` as we said above. When we want to introduce a stipulative definition, we'll write it out longhand, as in:
+
+>      T is defined to be `(M N)`.
+
+We'll regard the following two expressions:
+
+       (\x (x y))
+
+       (\z (z y))
+
+as syntactically equivalent, since they only involve a typographic change of a bound variable. Read Hankin section 2.3 for discussion of different attitudes one can take about this.
+
+Note that neither of those expressions are identical to:
+
+       (\x (x w))
+
+because here it's a free variable that's been changed. Nor are they identical to:
+
+       (\y (y y))
+
+because here the second occurrence of `y` is no longer free.
+
+There is plenty of discussion of this, and the fine points of how substitution works, in Hankin and in various of the tutorials we've linked to about the lambda calculus. We expect you have a good intuitive understanding of what to do already, though, even if you're not able to articulate it rigorously.
+
+
+Shorthand
+---------
+
+The grammar we gave for the lambda calculus leads to some verbosity. There are several informal conventions in widespread use, which enable the language to be written more compactly. (If you like, you could instead articulate a formal grammar which incorporates these additional conventions. Instead of showing it to you, we'll leave it as an exercise for those so inclined.)
+
+
+**Dot notation** Dot means "put a left paren here, and put the right
+paren as far the right as possible without creating unbalanced
+parentheses". So:
+
+       (\x (\y (x y)))
+
+can be abbreviated as:
+
+       (\x (\y. x y))
+
+and:
+
+       (\x (\y. (z y) z))
+
+would abbreviate:
+
+       (\x (\y ((z y) z)))
+
+This on the other hand:
+
+       (\x (\y. z y) z)
+
+would abbreviate:
+
+       (\x (\y (z y)) z)
+
+**Parentheses** Outermost parentheses around applications can be dropped. Moreover, applications will associate to the left, so `M N P` will be understood as `((M N) P)`. Finally, you can drop parentheses around abstracts, but not when they're part of an application. So you can abbreviate:
+
+       (\x. x y)
+
+as:
+
+       \x. x y
+
+but you should include the parentheses in:
+
+       (\x. x y) z
+
+and:
+
+       z (\x. x y)
+
+**Merging lambdas** An expression of the form `(\x (\y M))`, or equivalently, `(\x. \y. M)`, can be abbreviated as:
+
+       (\x y. M)
+
+Similarly, `(\x (\y (\z M)))` can be abbreviated as:
+
+       (\x y z. M)
+
+
+Lambda terms represent functions
+--------------------------------
+
+All (recursively computable) functions can be represented by lambda
+terms (the untyped lambda calculus is Turing complete). For some lambda terms, it is easy to see what function they represent:
+
+>      `(\x x)` represents the identity function: given any argument `M`, this function
+simply returns `M`: `((\x x) M) ~~> M`.
+
+>      `(\x (x x))` duplicates its argument:
+`((\x (x x)) M) ~~> (M M)`
+
+>      `(\x (\y x))` throws away its second argument:
+`(((\x (\y x)) M) N) ~~> M`
+
+and so on.
+
+It is easy to see that distinct lambda expressions can represent the same
+function, considered as a mapping from input to outputs. Obviously:
+
+       (\x x)
+
+and:
+
+       (\z z)
+
+both represent the same function, the identity function. However, we said above that we would be regarding these expressions as synactically equivalent, so they aren't yet really examples of *distinct* lambda expressions representing a single function. However, all three of these are distinct lambda expressions:
+
+       (\y x. y x) (\z z)
+
+       (\x. (\z z) x)
+
+       (\z z)
+
+yet when applied to any argument M, all of these will always return M. So they have the same extension. It's also true, though you may not yet be in a position to see, that no other function can differentiate between them when they're supplied as an argument to it. However, these expressions are all syntactically distinct.
+
+The first two expressions are *convertible*: in particular the first reduces to the second. So they can be regarded as proof-theoretically equivalent even though they're not syntactically identical. However, the proof theory we've given so far doesn't permit you to reduce the second expression to the third. So these lambda expressions are non-equivalent.
+
+There's an extension of the proof-theory we've presented so far which does permit this further move. And in that extended proof theory, all computable functions with the same extension do turn out to be equivalent (convertible). However, at that point, we still won't be working with the traditional mathematical notion of a function as a set of ordered pairs. One reason is that the latter but not the former permits uncomputable functions. A second reason is that the latter but not the former prohibits functions from applying to themselves. We discussed this some at the end of Monday's meeting (and further discussion is best pursued in person).
+
+
+
+Booleans and pairs
+==================
+
+Our definition of these is reviewed in [[Assignment1]].
+
+
+It's possible to do the assignment without using a Scheme interpreter, however
+you should take this opportunity to [get Scheme installed on your
+computer](/how_to_get_the_programming_languages_running_on_your_computer), and
+[get started learning Scheme](/learning_scheme). It will help you test out
+proposed answers to the assignment.
+
+
+
+
+
 1.     Declarative vs imperatival models of computation.
 2.     Variety of ways in which "order can matter."
 3.     Variety of meanings for "dynamic."