index 6bfa13c..3b92b61 100644 (file)
@@ -12,7 +12,8 @@ can be unhelpful. There's a backlash about the metaphors that tells people
to instead just look at the formal definition. We'll give that to you below, but it's
sometimes sloganized as
[A monad is just a monoid in the category of endofunctors, what's the problem?](http://stackoverflow.com/questions/3870088).
to instead just look at the formal definition. We'll give that to you below, but it's
sometimes sloganized as
[A monad is just a monoid in the category of endofunctors, what's the problem?](http://stackoverflow.com/questions/3870088).
-Without some intuitive guidance, this can also be unhelpful. We'll try to find a good balance.
+Without some intuitive guidance, this can also be unhelpful. We'll try to find a good balance.
+

The closest we will come to metaphorical talk is to suggest that

The closest we will come to metaphorical talk is to suggest that
@@ -21,6 +22,13 @@ any case, our emphasis will be on starting with the abstract structure
linguistics literature.

linguistics literature.

+> <small>After you've read this once and are coming back to re-read it to try to digest the details further, the "endofunctors" that slogan is talking about are a combination of our boxes and their associated maps. Their "monoidal" character is captured in the Monad Laws, where a "monoid"---don't confuse with a mon*ad*---is a simpler algebraic notion, meaning a universe with some associative operation that has an identity. For advanced study, here are some further links on the relation between monads as we're working with them and monads as they appear in category theory:
+(http://en.wikipedia.org/wiki/Outline_of_category_theory)
+
+
## Box types: type expressions with one free type variable ##

Recall that we've been using lower-case Greek letters
## Box types: type expressions with one free type variable ##

Recall that we've been using lower-case Greek letters
@@ -45,7 +53,7 @@ to specify which one of them the box is capturing. But let's keep it simple.) So
(α, α) tree

The idea is that whatever type the free type variable `α` might be instantiated to,
(α, α) tree

The idea is that whatever type the free type variable `α` might be instantiated to,
-we will be a "type box" of a certain sort that "contains" values of type `α`. For instance,
+we will have a "type box" of a certain sort that "contains" values of type `α`. For instance,
if `α list` is our box type, and `α` is the type `int`, then in this context, `int list`
is the type of a boxed integer.

if `α list` is our box type, and `α` is the type `int`, then in this context, `int list`
is the type of a boxed integer.

@@ -54,9 +62,9 @@ Warning: although our initial motivating examples are readily thought of as "con
Also, for clarity: the *box type* is the type `α list` (or as we might just say, the `list` type operator); the *boxed type* is some specific instantiation of the free type variable `α`. We'll often write boxed types as a box containing what the free
type variable instantiates to. So if our box type is `α list`, and `α` instantiates to the specific type `int`, we would write:

Also, for clarity: the *box type* is the type `α list` (or as we might just say, the `list` type operator); the *boxed type* is some specific instantiation of the free type variable `α`. We'll often write boxed types as a box containing what the free
type variable instantiates to. So if our box type is `α list`, and `α` instantiates to the specific type `int`, we would write:

-<u>int</u>
+<code><u>int</u></code>

-for the type of a boxed `int`. (We'll fool with the markup to make this show a genuine box later; for now it will just display as underlined.)
+for the type of a boxed `int`.

@@ -64,21 +72,21 @@ for the type of a boxed `int`. (We'll fool with the markup to make this show a g

A lot of what we'll be doing concerns types that are called *Kleisli arrows*. Don't worry about why they're called that, or if you like go read some Category Theory. All we need to know is that these are functions whose type has the form:

A lot of what we'll be doing concerns types that are called *Kleisli arrows*. Don't worry about why they're called that, or if you like go read some Category Theory. All we need to know is that these are functions whose type has the form:

-P -> <u>Q</u>
+<code>P -> <u>Q</u></code>

That is, they are functions from values of one type `P` to a boxed type `Q`, for some choice of type expressions `P` and `Q`.
For instance, the following are Kleisli arrows:

That is, they are functions from values of one type `P` to a boxed type `Q`, for some choice of type expressions `P` and `Q`.
For instance, the following are Kleisli arrows:

-int -> <u>bool</u>
+<code>int -> <u>bool</u></code>

-int list -> <u>int list</u>
+<code>int list -> <u>int list</u></code>

In the first, `P` has become `int` and `Q` has become `bool`. (The boxed type <code><u>Q</u></code> is <code><u>bool</u></code>).

Note that the left-hand schema `P` is permitted to itself be a boxed type. That is, where

In the first, `P` has become `int` and `Q` has become `bool`. (The boxed type <code><u>Q</u></code> is <code><u>bool</u></code>).

Note that the left-hand schema `P` is permitted to itself be a boxed type. That is, where
-if `α list` is our box type, we can write the second arrow as
+if `α list` is our box type, we can write the second type as:

-<u>int</u> -> <u>Q</u>
+<code><u>int</u> -> <u>int list</u></code>

As semanticists, you are no doubt familiar with the debates between those who insist that propositions are sets of worlds and those who insist they are context change potentials. We hope to show you, in coming weeks, that propositions are (certain sorts of) Kleisli arrows. But this doesn't really compete with the other proposals; it is a generalization of them. Both of the other proposed structures can be construed as specific Kleisli arrows.

As semanticists, you are no doubt familiar with the debates between those who insist that propositions are sets of worlds and those who insist they are context change potentials. We hope to show you, in coming weeks, that propositions are (certain sorts of) Kleisli arrows. But this doesn't really compete with the other proposals; it is a generalization of them. Both of the other proposed structures can be construed as specific Kleisli arrows.

@@ -99,13 +107,13 @@ Here are the types of our crucial functions, together with our pronunciation, an

<code>&lt;=&lt; or mcomp : (Q -> <u>R</u>) -> (P -> <u>Q</u>) -> (P -> <u>R</u>)</code>

<code>&lt;=&lt; or mcomp : (Q -> <u>R</u>) -> (P -> <u>Q</u>) -> (P -> <u>R</u>)</code>

-<code>&gt;=&gt; or mpmoc (flip mcomp): (P -> <u>Q</u>) -> (Q -> <u>R</u>) -> (P -> <u>R</u>)</code>
+<code>&gt;=&gt; (flip mcomp, should we call it mpmoc?): (P -> <u>Q</u>) -> (Q -> <u>R</u>) -> (P -> <u>R</u>)</code>

<code>&gt;&gt;= or mbind : (<u>Q</u>) -> (Q -> <u>R</u>) -> (<u>R</u>)</code>

<code>&gt;&gt;= or mbind : (<u>Q</u>) -> (Q -> <u>R</u>) -> (<u>R</u>)</code>

-<code>=&lt;&lt; or mdnib (flip mbind) (<u>Q</u>) -> (Q -> <u>R</u>) -> (<u>R</u>)</code>
+<code>=&lt;&lt; (flip mbind, should we call it mdnib?) (Q -> <u>R</u>) -> (<u>Q</u>) -> (<u>R</u>)</code>

-<code>join: <span class="double">P</span> -> <u>P</u></code>
+<code>join: <span class="box2">P</span> -> <u>P</u></code>

The menagerie isn't quite as bewildering as you might suppose. Many of these will

The menagerie isn't quite as bewildering as you might suppose. Many of these will
@@ -119,7 +127,11 @@ certain useful guarantees.
if there is a `map` function defined for that box type with the type given above. This
has to obey the following Map Laws:

if there is a `map` function defined for that box type with the type given above. This
has to obey the following Map Laws:

-    TODO LAWS
+    <code>map (id : α -> α) = (id : <u>α</u> -> <u>α</u>)</code>
+    <code>map (g ○ f) = (map g) ○ (map f)</code>
+
+    Essentially these say that `map` is a homomorphism from `(α -> β, ○, id)` to <code>(<u>α</u> -> <u>β</u>, ○', id')</code>, where `○'` and `id'` are `○` and `id` restricted to arguments of type <code><u>_</u></code>. That might be hard to digest because it's so abstract. Think of the following concrete example: if you take a `α list` (that's our <code><u>α</u></code>), and apply `id` to each of its elements, that's the same as applying `id` to the list itself. That's the first law. And if you apply the composition of functions `g ○ f` to each of the list's elements, that's the same as first applying `f` to each of the elements, and then going through the elements of the resulting list and applying `g` to each of those elements. That's the second law. These laws obviously hold for our familiar notion of `map` in relation to lists.
+

*   ***MapNable*** (in Haskelese, "Applicatives") A Mappable box type is *MapNable*
if there are in addition `map2`, `mid`, and `mapply`.  (Given either

*   ***MapNable*** (in Haskelese, "Applicatives") A Mappable box type is *MapNable*
if there are in addition `map2`, `mid`, and `mapply`.  (Given either
@@ -152,8 +164,8 @@ The name "bind" is not well chosen from our perspective, but this is too deeply

To take a trivial (but, as we will see, still useful) example,
consider the Identity box type: `α`. So if `α` is type `bool`,

To take a trivial (but, as we will see, still useful) example,
consider the Identity box type: `α`. So if `α` is type `bool`,
-then a boxed `α` is ... a `bool`. In terms of the box analogy, the
-Identity box type is a completely invisible box. With the following
+then a boxed `α` is ... a `bool`. That is, <code><u>α</u> = α</code>.
+In terms of the box analogy, the Identity box type is a completely invisible box. With the following
definitions:

mid ≡ \p. p
definitions:

mid ≡ \p. p
@@ -161,60 +173,60 @@ definitions:

Identity is a monad.  Here is a demonstration that the laws hold:

Identity is a monad.  Here is a demonstration that the laws hold:

-    mcomp mid k == (\fgx.f(gx)) (\p.p) k
-                ~~> \x.(\p.p)(kx)
-                ~~> \x.kx
-                ~~> k
-    mcomp k mid == (\fgx.f(gx)) k (\p.p)
-                ~~> \x.k((\p.p)x)
-                ~~> \x.kx
-                ~~> k
-    mcomp (mcomp j k) l == mcomp ((\fgx.f(gx)) j k) l
-                       ~~> mcomp (\x.j(kx)) l
-                        == (\fgx.f(gx)) (\x.j(kx)) l
-                       ~~> \x.(\x.j(kx))(lx)
-                       ~~> \x.j(k(lx))
-    mcomp j (mcomp k l) == mcomp j ((\fgx.f(gx)) k l)
-                       ~~> mcomp j (\x.k(lx))
-                        == (\fgx.f(gx)) j (\x.k(lx))
-                       ~~> \x.j((\x.k(lx)) x)
-                       ~~> \x.j(k(lx))
-
-The Identity Monad is favored by mimes.
+    mcomp mid k  (\fgx.f(gx)) (\p.p) k
+              ~~> \x.(\p.p)(kx)
+              ~~> \x.kx
+              ~~> k
+    mcomp k mid  (\fgx.f(gx)) k (\p.p)
+              ~~> \x.k((\p.p)x)
+              ~~> \x.kx
+              ~~> k
+    mcomp (mcomp j k) l  mcomp ((\fgx.f(gx)) j k) l
+                      ~~> mcomp (\x.j(kx)) l
+                         (\fgx.f(gx)) (\x.j(kx)) l
+                      ~~> \x.(\x.j(kx))(lx)
+                      ~~> \x.j(k(lx))
+    mcomp j (mcomp k l)  mcomp j ((\fgx.f(gx)) k l)
+                      ~~> mcomp j (\x.k(lx))
+                         (\fgx.f(gx)) j (\x.k(lx))
+                      ~~> \x.j((\x.k(lx)) x)
+                      ~~> \x.j(k(lx))
+
+The Identity monad is favored by mimes.

To take a slightly less trivial (and even more useful) example,
consider the box type `α list`, with the following operations:

To take a slightly less trivial (and even more useful) example,
consider the box type `α list`, with the following operations:

-    mid: α -> [α]
+    mid : α -> [α]
mid a = [a]

mid a = [a]

-    mcomp: (β -> [γ]) -> (α -> [β]) -> (α -> [γ])
-    mcomp f g a = concat (map f (g a))
-                = foldr (\b -> \gs -> (f b) ++ gs) [] (g a)
-                = [c | b <- g a, c <- f b]
+    mcomp : (β -> [γ]) -> (α -> [β]) -> (α -> [γ])
+    mcomp k j a = concat (map k (j a)) = List.flatten (List.map k (j a))
+                = foldr (\b ks -> (k b) ++ ks) [] (j a) = List.fold_right (fun b ks -> List.append (k b) ks) [] (j a)
+                = [c | b <- j a, c <- k b]

-The last three definitions of `mcomp` are all equivalent, and it is easy to see that they obey the monad laws (see exercises TODO).
+In the first two definitions of `mcomp`, we give the definition first in Haskell and then in the equivalent OCaml. The three different definitions of `mcomp` (one for each line) are all equivalent, and it is easy to show that they obey the Monad Laws. (You will do this in the homework.)

-In words, `mcomp f g a` feeds the `a` (which has type `α`) to `g`, which returns a list of `β`s;
-each `β` in that list is fed to `f`, which returns a list of `γ`s. The
+In words, `mcomp k j a` feeds the `a` (which has type `α`) to `j`, which returns a list of `β`s;
+each `β` in that list is fed to `k`, which returns a list of `γ`s. The
final result is the concatenation of those lists of `γ`s.

For example:

final result is the concatenation of those lists of `γ`s.

For example:

-    let f b = [b, b+1] in
-    let g a = [a*a, a+a] in
-    mcomp f g 7 ==> [49, 50, 14, 15]
+    let j a = [a*a, a+a] in
+    let k b = [b, b+1] in
+    mcomp k j 7 ==> [49, 50, 14, 15]

-`g 7` produced `[49, 14]`, which after being fed through `f` gave us `[49, 50, 14, 15]`.
+`j 7` produced `[49, 14]`, which after being fed through `k` gave us `[49, 50, 14, 15]`.

Contrast that to `m\$` (`mapply`, which operates not on two *box-producing functions*, but instead on two *values of a boxed type*, one containing functions to be applied to the values in the other box, via some predefined scheme. Thus:

Contrast that to `m\$` (`mapply`, which operates not on two *box-producing functions*, but instead on two *values of a boxed type*, one containing functions to be applied to the values in the other box, via some predefined scheme. Thus:

-    let gs = [(\a->a*a),(\a->a+a)] in
+    let js = [(\a->a*a),(\a->a+a)] in
let xs = [7, 5] in
let xs = [7, 5] in
-    mapply gs xs ==> [49, 25, 14, 10]
+    mapply js xs ==> [49, 25, 14, 10]

-As we illustrated in class, there are clear patterns shared between lists and option types and trees, so perhaps you can see why people want to identify the general structures. But it probably isn't obvious yet why it would be useful to do so. To a large extent, this will only emerge over the next few classes. But we'll begin to demonstrate the usefulness of these patterns by talking through a simple example, that uses the Monadic functions of the Option/Maybe box type.
+As we illustrated in class, there are clear patterns shared between lists and option types and trees, so perhaps you can see why people want to identify the general structures. But it probably isn't obvious yet why it would be useful to do so. To a large extent, this will only emerge over the next few classes. But we'll begin to demonstrate the usefulness of these patterns by talking through a simple example, that uses the monadic functions of the Option/Maybe box type.

## Safe division ##

## Safe division ##
@@ -325,7 +337,7 @@ it needs to be adjusted because someone else might make trouble.

But we can automate the adjustment, using the monadic machinery we introduced above.
As we said, there needs to be different `>>=`, `map2` and so on operations for each

But we can automate the adjustment, using the monadic machinery we introduced above.
As we said, there needs to be different `>>=`, `map2` and so on operations for each
-Monad or box type we're working with.
+monad or box type we're working with.
symbol and it will calculate from the context of the surrounding type constraints what
monad you must have meant. In OCaml, the monadic operators are not pre-defined, but we will
symbol and it will calculate from the context of the surrounding type constraints what
monad you must have meant. In OCaml, the monadic operators are not pre-defined, but we will
@@ -371,7 +383,7 @@ Compare the new definitions of `safe_add3` and `safe_div3` closely: the definiti
for `safe_add3` shows what it looks like to equip an ordinary operation to
survive in dangerous presupposition-filled world. Note that the new
definition of `safe_add3` does not need to test whether its arguments are
for `safe_add3` shows what it looks like to equip an ordinary operation to
survive in dangerous presupposition-filled world. Note that the new
definition of `safe_add3` does not need to test whether its arguments are
-None values or real numbers---those details are hidden inside of the
+`None` values or real numbers---those details are hidden inside of the
`bind` function.

Note also that our definition of `safe_div3` recovers some of the simplicity of
`bind` function.

Note also that our definition of `safe_div3` recovers some of the simplicity of
@@ -393,5 +405,5 @@ theory of accommodation, and a theory of the situations in which
material within the sentence can satisfy presuppositions for other
material that otherwise would trigger a presupposition violation; but,
not surprisingly, these refinements will require some more
material within the sentence can satisfy presuppositions for other
material that otherwise would trigger a presupposition violation; but,
not surprisingly, these refinements will require some more
-sophisticated techniques than the super-simple Option monad.)
+sophisticated techniques than the super-simple Option/Maybe monad.)