Monad Transformers step by step
[lambda.git] / topics / week7_environments_and_closures.mdwn
index 9cbded2..7dc3cd4 100644 (file)
@@ -16,7 +16,7 @@ Now consider:
     (\y.y) w                         [w->2]
     y                                [y->w, w->2]
 
-In the first step, we bind `w` to the term `2`, by saving this association in our environment. In the second step, we bind `y` to the term `w`. In the third step, we would like to replace `y` with whatever its current value is according to our scorecard/environment. But a naive handling of this would replace `y` with `w`; and that's not the right result, because `w` should itself be mapped onto `2`. On the other hand, in:
+In the first step, we bind `w` to the term `2`, by saving this association in our environment. In the second step, we bind `y` to the term `w`. In the third step, we would like to replace `y` with whatever its current value is according to our scorecard/environment. But a naive handling of this would replace `y` with `w`; and that's not the right result, because `w` should itself be mapped to `2`. On the other hand, in:
 
     term                             environment
     ----                             -----------
@@ -112,9 +112,11 @@ I 0
 
 using the value that `x` was bound to in context<sub>2</sub>, _where `f` was bound_?
 
-In fact, when we specified rules for the Lambda Calculus, we committed ourselves to taking the second of these strategies. But both of the kinds of binding described here are perfectly coherent. The first is called "dynamic binding" or "dynamic scoping" and the second is called "lexical or static binding/scoping". Neither is intrinsically more correct or appropriate than the other. The first is somewhat easier for the people who write implementations of programming languages to handle; so historically it used to predominate. But the second is easier for programmers to reason about. In Scheme, variables are bound in the lexical/static way by default, just as in the Lambda Calculus; but there is special vocabulary for dealing with dynamic binding too, which is useful in some situations. (As far as I'm aware, Haskell and OCaml only provide the lexical/static binding.)
+In fact, when we specified rules for the Lambda Calculus, we committed ourselves to taking the second of these strategies. But both of the kinds of binding described here are perfectly coherent. The first is called "dynamic binding" or "dynamic scoping" and the second is called "lexical or static binding/scoping". Neither is intrinsically more correct or appropriate than the other. The first is somewhat easier for the people who write implementations of programming languages to handle; so historically it used to predominate. But the second is easier for programmers to reason about.
 
-In any case, if we're going to have the same semantics as the untyped Lambda Calculus, we're going to have to make sure that when we bind the variable `f` to the value `\y. y x`, that (locally) free variable `x` remains associated with the value `2` that `x` was bound to in the context where `f` is bound, not the possibly different value that `x` may be bound to later, when `f` is applied. One thing we might consider doing is _evaluating the body_ of the abstract that we want to bind `f` to, using the then-current environment to evaluate the variables that the abstract doesn't itself bind. But that's not a good idea. What if the body of that abstract never terminates? The whole program might be OK, because it might never go on to apply `f`. But we'll be stuck trying to evaluate `f`'s body anyway, and will never get to the rest of the program. Another thing we could consider doing is to substitute the `2` in for the variable `x`, and then bind `f` to `\y. y 2`. That would work, but the whole point of this evaluation strategy is to avoid doing those complicated (and inefficient) substitutions. Can you think of a third idea?
+> In Scheme, variables are bound in the lexical/static way by default, just as in the Lambda Calculus; but there is special vocabulary for dealing with dynamic binding too, which is useful in some situations. As far as I'm aware, Haskell and OCaml only provide the lexical/static binding. <em>Shell scripts</em>, on the other hand, only use dynamic binding. If you type this at a shell prompt: `( x=0; foo() { echo $x; }; bar() { local x=1; foo; }; bar )`, it will print `1` not `0`.
+
+In any case, if we're going to have the same semantics as the untyped Lambda Calculus, we're going to have to make sure that when we bind the variable `f` to the value `\y. y x`, that (locally) free variable `x` remains associated with the value `0` that `x` was bound to in the context where `f` is bound, not the possibly different value that `x` may be bound to later, when `f` is applied. One thing we might consider doing is _evaluating the body_ of the abstract that we want to bind `f` to, using the then-current environment to evaluate the variables that the abstract doesn't itself bind. But that's not a good idea. What if the body of that abstract never terminates? The whole program might be OK, because it might never go on to apply `f`. But we'll be stuck trying to evaluate `f`'s body anyway, and will never get to the rest of the program. Another thing we could consider doing is to substitute the `2` in for the variable `x`, and then bind `f` to `\y. y 2`. That would work, but the whole point of this evaluation strategy is to avoid doing those complicated (and inefficient) substitutions. Can you think of a third idea?
 
 What we will do is have our environment associate `f` not just with a `Lambda` term, but also with the environment that was in place _when_ `f` was bound. Then later, if we ever do use `f`, we have that saved environment around to look up any free variables in. More specifically, we'll associate `f` not with the _term_: