edits
[lambda.git] / topics / week5_system_F.mdwn
index 97b17f8..f89748b 100644 (file)
@@ -536,9 +536,17 @@ version of the principle type.
 
 As we have seen, it is often possible to infer a type for an
 expression based on its internal structure, as well as by the way in
-which it is used.  When programming interpreters and compilers infer
-types, they often (but not always) aim for the principle type (if one
-is guaranteed to exist).
+which it is used.  In the simply-typed lambda calculus, types for a
+well-typed expression can always be inferred; this is what enables
+programs to be written "Curry-style", i.e., without explicit types.
+Unfortunately, for unrestricted System F, type inference is
+undecidable, so a certain amount of explicit type specification is
+required.
+
+OCaml places restrictions on its type system that makes type inference
+feasible.  When programming interpreters and compilers infer types,
+they often (but not always) aim for the principle type (if one is
+guaranteed to exist).
 
     # let pair a b z = z a b;;
     val pair : 'a -> 'b -> ('a -> 'b -> 'c) -> 'c = <fun>
@@ -548,6 +556,11 @@ the OCaml interpreter, it correctly infers the principle type we gave
 above (remember that OCaml doesn't bother giving the explicit
 universal type quantifiers required by System F).
 
+Computing principle types involves unification algorithms.  Inferring
+types is a subtle and complicated business, and all sorts of
+extensions to a programming language can interfere with it.
+
+
 
 Bottom type, divergence
 -----------------------