added discussion of computation
[lambda.git] / topics / week3_what_is_computation.mdwn
similarity index 74%
rename from topics/_week3_what_is_computation.mdwn
rename to topics/week3_what_is_computation.mdwn
index 47748a1..32a4572 100644 (file)
@@ -6,6 +6,7 @@ expression and replacing it with an equivalent simpler expression.
     3 + 4 == 7
 
 This equation can be interpreted as expressing the thought that the
+<<<<<<< HEAD:topics/_week3_what_is_computation.mdwn
 complex expression `3 + 4` evaluates to `7`.  The evaluation of the
 expression computing a sum.  There is a clear sense in which the
 expression `7` is simpler than the expression `3 + 4`: `7` is
@@ -13,6 +14,28 @@ syntactically simple, and `3 + 4` is syntactically complex.
 
 Now let's take this folk notion of computation, and put some pressure
 on it.
+=======
+complex expression `3 + 4` evaluates to `7`.  In this case, the
+evaluation of the expression involves computing a sum.  There is a
+clear sense in which the expression `7` is simpler than the expression
+`3 + 4`: `7` is syntactically simple, and `3 + 4` is syntactically
+complex.
+
+It's worth pausing a moment and wondering why we feel that replacing a
+complex expression like `3 + 4` with a simplex expression like `7`
+feels like we've accomplished something.  If they really are
+equivalent, why shouldn't we consider them to be equally valuable, or
+even to prefer the longer expression?  For instance, should we prefer
+2^9, or 512?  Likewise, in the realm of logic, why shold we ever
+prefer `B` to the conjunction of `A` with `A --> B`?
+
+The question to ask here is whether our intuitions about what counts
+as more evaluated always tracks simplicity of expression, or whether
+it tracks what is more useful to us in a given larger situation.
+
+But even deciding which expression ought to count as simpler is not
+always so clear.
+>>>>>>> working:topics/week3_what_is_computation.mdwn
 
 ##Church arithmetic##
 
@@ -84,7 +107,7 @@ encoding of `18` is just a uniform sequence of nested `f`'s.
 This example shows that computation can't be just simplicity as
 measured by the number of symbols in the representation.  There is
 still some sense in which the evaluated expression is simpler, but the
-right way to characterize simpler is elusive.
+right way to characterize "simpler" is elusive.
 
 One possibility is to define simpler in terms of irreversability.  The
 reduction rules of the lambda calculus define an asymmetric relation
@@ -97,16 +120,22 @@ that reduce to that term.
     (y((\xx)y)) ~~> yy
     etc.
 
+<<<<<<< HEAD:topics/_week3_what_is_computation.mdwn
 In the arithmetic example, there is only one number that corresponds
 to the sum of 3 and 4 (namely, 7).  But there are many sums that add
 up to 7: 3+4, 4+3, 5+2, 2+5, 6+1, 1+6, etc.
+=======
+Likewise, in the arithmetic example, there is only one number that
+corresponds to the sum of 3 and 4 (namely, 7).  But there are many
+sums that add up to 7: 3+4, 4+3, 5+2, 2+5, 6+1, 1+6, etc.
+>>>>>>> working:topics/week3_what_is_computation.mdwn
 
 So the unevaluated expression contains information that is missing
 from the evaluated value: information about *how* that value was
 arrived at.  So this suggests the following way of thinking about what
 counts as evaluated:
 
-    Given two expressions such that one reduced to the other,
+    Given two expressions such that one reduces to the other,
     the more evaluated one is the one that contains less information.
 
 This definition is problematic, though, if we try to define the amount
@@ -129,7 +158,9 @@ is no simplification at all.
 Even worse, in this case, the "reduced" form is longer and more
 complex by any measure.
 
+We may have to settle for the idea that a well-chosen reduction system
+will characterize our intuitive notion of evaluation in most cases, or
+in some useful class of non-pathological cases.  
+
 These are some of the deeper issues to keep in mind as we discuss the
 ins and outs of reduction strategies.
-
-