index 2d9035a..d7a2cf1 100644 (file)
@@ -77,10 +77,11 @@ tick marks, Grecification, or capitalization), there is no need to
distinguish expression abstraction from type abstraction by also
changing the shape of the lambda.

-This expression is a polymorphic version of the identity function.  It
-defines one general identity function that can be adapted for use with
-expressions of any type. In order to get it ready to apply this
-identity function to, say, a variable of type boolean, just do this:
+The expression immediately below is a polymorphic version of the
+identity function.  It defines one general identity function that can
+be adapted for use with expressions of any type. In order to get it
+ready to apply this identity function to, say, a variable of type
+boolean, just do this:

<code>(&Lambda; 'a (&lambda; x:'a . x)) [t]</code>

@@ -142,13 +143,16 @@ other words, the instantiation turns a Church number into a
pair-manipulating function, which is the heart of the strategy for
this version of predecessor.

-But of course, the type `Pair` (in this simplified example) is defined
-in terms of Church numbers.  If we tried to replace the type for
-Church numbers with a concrete (simple) type, we would have to replace
-each `X` with `(N -> N -> N) -> N`.  But then we'd have to replace
-each `N` with `(X -> X) -> X -> X`.  And then replace each `X`
-with... ad infinitum.  If we had to choose a concrete type built
-entirely from explicit base types, we'd be unable to proceed.
+Could we try to build a system for doing Church arithmetic in which
+the type for numbers always manipulated ordered pairs?  The problem is
+that the ordered pairs we need here are pairs of numbers.  If we tried
+to replace the type for Church numbers with a concrete (simple) type,
+we would have to replace each `X` with the type for Pairs, `(N -> N ->
+N) -> N`.  But then we'd have to replace each of these `N`'s with the
+type for Church numbers, `(X -> X) -> X -> X`.  And then we'd have to
+replace each of these `X`'s with... ad infinitum.  If we had to choose
+a concrete type built entirely from explicit base types, we'd be
+unable to proceed.

[See Benjamin C. Pierce. 2002. *Types and Programming Languages*, MIT
Press, chapter 23.]