(no commit message)
[lambda.git] / topics / _week5_system_F.mdwn
index 4afb43b..a7b4bb9 100644 (file)
@@ -34,35 +34,34 @@ notational convention (which will last throughout the rest of the
 course) that "<code>x:&alpha;</code>" represents an expression `x`
 whose type is <code>&alpha;</code>.
 
-Then System F can be specified as follows (choosing notation that will
-match up with usage in O'Caml, whose type system is based on System F):
+Then System F can be specified as follows:
 
        System F:
        ---------
-       types τ ::= c | 'a | τ1 -> τ2 | ∀'a. τ
-       expressions e ::= x | λx:τ. e | e1 e2 | Λ'a. e | e [τ]
+       types       τ ::= c | α | τ1 -> τ2 | ∀α.τ
+       expressions e ::= x | λx:τ.e | e1 e2 | Λα.e | e [τ]
 
 In the definition of the types, "`c`" is a type constant.  Type
 constants play the role in System F that base types play in the
 simply-typed lambda calculus.  So in a lingusitics context, type
-constants might include `e` and `t`.  "`'a`" is a type variable.  The
+constants might include `e` and `t`.  "α" is a type variable.  The
 tick mark just indicates that the variable ranges over types rather
-than over values; in various discussion below and later, type variable
+than over values; in various discussion below and later, type variables
 can be distinguished by using letters from the greek alphabet
 (&alpha;, &beta;, etc.), or by using capital roman letters (X, Y,
 etc.).  "`τ1 -> τ2`" is the type of a function from expressions of
-type `τ1` to expressions of type `τ2`.  And "`∀'a. τ`" is called a
+type `τ1` to expressions of type `τ2`.  And "`∀α.τ`" is called a
 universal type, since it universally quantifies over the type variable
-`'a`.  You can expect that in `∀'a. τ`, the type `τ` will usually
-have at least one free occurrence of `'a` somewhere inside of it.
+`'a`.  You can expect that in `∀α.τ`, the type `τ` will usually
+have at least one free occurrence of `α` somewhere inside of it.
 
 In the definition of the expressions, we have variables "`x`" as usual.
-Abstracts "`λx:τ. e`" are similar to abstracts in the simply-typed lambda
+Abstracts "`λx:τ.e`" are similar to abstracts in the simply-typed lambda
 calculus, except that they have their shrug variable annotated with a
 type.  Applications "`e1 e2`" are just like in the simply-typed lambda calculus.
 
 In addition to variables, abstracts, and applications, we have two
-additional ways of forming expressions: "`Λ'a. e`" is called a *type
+additional ways of forming expressions: "`Λα.e`" is called a *type
 abstraction*, and "`e [τ]`" is called a *type application*.  The idea
 is that <code>&Lambda;</code> is a capital <code>&lambda;</code>: just
 like the lower-case <code>&lambda;</code>, <code>&Lambda;</code> binds
@@ -70,9 +69,9 @@ variables in its body, except that unlike <code>&lambda;</code>,
 <code>&Lambda;</code> binds type variables instead of expression
 variables.  So in the expression
 
-<code>&Lambda; α (&lambda; x:α . x)</code>
+<code>&Lambda; α (&lambda; x:α. x)</code>
 
-the <code>&Lambda;</code> binds the type variable `'a` that occurs in
+the <code>&Lambda;</code> binds the type variable `α` that occurs in
 the <code>&lambda;</code> abstract.  Of course, as long as type
 variables are carefully distinguished from expression variables (by
 tick marks, Grecification, or capitalization), there is no need to
@@ -85,27 +84,27 @@ be adapted for use with expressions of any type. In order to get it
 ready to apply this identity function to, say, a variable of type
 boolean, just do this:
 
-<code>(&Lambda; 'a (&lambda; x:'a . x)) [t]</code>    
+<code>(&Lambda; α (&lambda; x:α. x)) [t]</code>    
 
 This type application (where `t` is a type constant for Boolean truth
-values) specifies the value of the type variable `'a`.  Not
+values) specifies the value of the type variable `α`.  Not
 surprisingly, the type of this type application is a function from
 Booleans to Booleans:
 
-<code>((&Lambda; 'a (&lambda; x:'a . x)) [t]): (b -> b)</code>    
+<code>((&Lambda;α (&lambda; x:α . x)) [t]): (b->b)</code>    
 
 Likewise, if we had instantiated the type variable as an entity (base
 type `e`), the resulting identity function would have been a function
 of type `e -> e`:
 
-<code>((&Lambda; 'a (&lambda; x:'a . x)) [e]): (e -> e)</code>    
+<code>((&Lambda;α (&lambda; x:α. x)) [e]): (e->e)</code>    
 
-Clearly, for any choice of a type `'a`, the identity function can be
-instantiated as a function from expresions of type `'a` to expressions
-of type `'a`.  In general, then, the type of the uninstantiated
+Clearly, for any choice of a type `α`, the identity function can be
+instantiated as a function from expresions of type `α` to expressions
+of type `α`.  In general, then, the type of the uninstantiated
 (polymorphic) identity function is
 
-<code>(&Lambda; 'a (&lambda; x:'a . x)): (&forall; 'a . 'a -> 'a)</code>
+<code>(&Lambda;α (&lambda;x:α . x)): (&forall;α. α-α)</code>
 
 Pred in System F
 ----------------
@@ -117,15 +116,16 @@ however.  Here is one way, coded in
 System F|http://www.cis.upenn.edu/~bcpierce/tapl/index.html]] (the
 relevant evaluator is called "fullpoly"):
 
-    N = All X . (X->X)->X->X;
-    Pair = (N -> N -> N) -> N;
-    let zero = lambda X . lambda s:X->X . lambda z:X. z in 
-    let fst = lambda x:N . lambda y:N . x in
-    let snd = lambda x:N . lambda y:N . y in
-    let pair = lambda x:N . lambda y:N . lambda z:N->N->N . z x y in
-    let suc = lambda n:N . lambda X . lambda s:X->X . lambda z:X . s (n [X] s z) in
-    let shift = lambda p:Pair . pair (suc (p fst)) (p fst) in
-    let pre = lambda n:N . n [Pair] shift (pair zero zero) snd in
+    N = ∀α.(α->α)->α->α;
+    Pair = (N->N->N)->N;
+
+    let zero = Λα. λs:α->α. λz:α. z in 
+    let fst = λx:N. λy:N. x in
+    let snd = λx:N. λy:N. y in
+    let pair = λx:N. λy:N. λz:N->N->N. z x y in
+    let suc = λn:N. Λα. λs:α->α. λz:α. s (n [α] s z) in
+    let shift = λp:Pair. pair (suc (p fst)) (p fst) in
+    let pre = λn:N. n [Pair] shift (pair zero zero) snd in
 
     pre (suc (suc (suc zero)));
 
@@ -138,7 +138,7 @@ lambda).
 
 The key to the extra expressive power provided by System F is evident
 in the typing imposed by the definition of `pre`.  The variable `n` is
-typed as a Church number, i.e., as `All X . (X->X)->X->X`.  The type
+typed as a Church number, i.e., as `∀α.(α->α)->α->α`.  The type
 application `n [Pair]` instantiates `n` in a way that allows it to
 manipulate ordered pairs: `n [Pair]: (Pair->Pair)->Pair->Pair`.  In
 other words, the instantiation turns a Church number into a
@@ -151,8 +151,8 @@ that the ordered pairs we need here are pairs of numbers.  If we tried
 to replace the type for Church numbers with a concrete (simple) type,
 we would have to replace each `X` with the type for Pairs, `(N -> N ->
 N) -> N`.  But then we'd have to replace each of these `N`'s with the
-type for Church numbers, `(X -> X) -> X -> X`.  And then we'd have to
-replace each of these `X`'s with... ad infinitum.  If we had to choose
+type for Church numbers, `(α -> α) -> α -> α`.  And then we'd have to
+replace each of these `α`'s with... ad infinitum.  If we had to choose
 a concrete type built entirely from explicit base types, we'd be
 unable to proceed.
  
@@ -165,19 +165,19 @@ Typing &omega;
 In fact, unlike in the simply-typed lambda calculus, 
 it is even possible to give a type for &omega; in System F. 
 
-<code>&omega; = lambda x:(All X. X->X) . x [All X . X->X] x</code>
+<code>&omega; = λx:(∀α.α->α). x [∀α.α->α] x</code>
 
 In order to see how this works, we'll apply &omega; to the identity
 function.  
 
 <code>&omega; id ==</code>
 
-    (lambda x:(All X . X->X) . x [All X . X->X] x) (lambda X . lambda x:X . x)
+    (λx:(∀α.α->α). x [∀α.α->α] x) (Λα.λx:α.x)
 
-Since the type of the identity function is `(All X . X->X)`, it's the
+Since the type of the identity function is `∀α.α->α`, it's the
 right type to serve as the argument to &omega;.  The definition of
 &omega; instantiates the identity function by binding the type
-variable `X` to the universal type `All X . X->X`.  Instantiating the
+variable `α` to the universal type `∀α.α->α`.  Instantiating the
 identity function in this way results in an identity function whose
 type is (in some sense, only accidentally) the same as the original
 fully polymorphic identity function.
@@ -228,10 +228,8 @@ uses.  Can we capture this using polymorphic types?
 
 With these basic types, we want to say something like this:
 
-    and:t->t->t = lambda l:t . lambda r:t . l r false
-    and = lambda 'a . lambda 'b . 
-            lambda l:'a->'b . lambda r:'a->'b . 
-              lambda x:'a . and:'b (l x) (r x)
+    and:t->t->t = λl:t. λr:t. l r false
+    and = Λα.Λβ.λl:α->β.λr:α->β.λx:α. and [β] (l x) (r x)
 
 The idea is that the basic *and* conjoins expressions of type `t`, and
 when *and* conjoins functional types, it builds a function that
@@ -258,7 +256,7 @@ argument of that type.  We would like to instantiate the recursive use
 of *and* in the definition by using the result type.  But fully
 instantiating the definition as given requires type application to a
 pair of types, not to just a single type.  We want to somehow
-guarantee that 'b will always itself be a complex type.
+guarantee that β will always itself be a complex type.
 
 So conjunction and disjunction provide a compelling motivation for
 polymorphism in natural language, but we don't yet have the ability to