tweak week12: caps
[lambda.git] / manipulating_trees_with_monads.mdwn
index e7cccec..e3ed6f3 100644 (file)
@@ -13,7 +13,7 @@ From an engineering standpoint, we'll build a tree transformer that
 deals in monads.  We can modify the behavior of the system by swapping
 one monad for another.  We've already seen how adding a monad can add
 a layer of funtionality without disturbing the underlying system, for
-instance, in the way that the reader monad allowed us to add a layer
+instance, in the way that the Reader monad allowed us to add a layer
 of intensionality to an extensional grammar, but we have not yet seen
 the utility of replacing one monad with other.
 
@@ -84,11 +84,11 @@ supplying the appropriate `int -> int` operation in place of `double`:
 Note that what `tree_map` does is take some unchanging contextual
 information---what to do to each leaf---and supplies that information
 to each subpart of the computation.  In other words, `tree_map` has the
-behavior of a reader monad.  Let's make that explicit.
+behavior of a Reader monad.  Let's make that explicit.
 
 In general, we're on a journey of making our `tree_map` function more and
 more flexible.  So the next step---combining the tree transformer with
-a reader monad---is to have the `tree_map` function return a (monadized)
+a Reader monad---is to have the `tree_map` function return a (monadized)
 tree that is ready to accept any `int -> int` function and produce the
 updated tree.
 
@@ -190,7 +190,7 @@ result:
 Now that we have a tree transformer that accepts a *reader* monad as a
 parameter, we can see what it would take to swap in a different monad.
 
-For instance, we can use a state monad to count the number of leaves in
+For instance, we can use a State monad to count the number of leaves in
 the tree.
 
        type 'a state = int -> 'a * int;;
@@ -238,7 +238,7 @@ One more revealing example before getting down to business: replacing
 
 Unlike the previous cases, instead of turning a tree into a function
 from some input to a result, this transformer replaces each `int` with
-a list of `int`'s. We might also have done this with a Reader Monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List Monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment.
+a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment.
 
 
 <!--
@@ -260,8 +260,8 @@ of leaves?
                               continuation_bind (tree_monadize f r) (fun r' ->
                                 continuation_unit (Node (l', r'))));;
 
-We use the continuation monad described above, and insert the
-`continuation` type in the appropriate place in the `tree_monadize` code. Then if we give the `tree_monadize` function an operation that converts `int`s into `'b`-wrapping continuation monads, it will give us back a way to turn `int tree`s into corresponding `'b tree`-wrapping continuation monads.
+We use the Continuation monad described above, and insert the
+`continuation` type in the appropriate place in the `tree_monadize` code. Then if we give the `tree_monadize` function an operation that converts `int`s into `'b`-wrapping Continuation monads, it will give us back a way to turn `int tree`s into corresponding `'b tree`-wrapping Continuation monads.
 
 So for example, we compute:
 
@@ -270,7 +270,7 @@ So for example, we compute:
 
 We have found a way of collapsing a tree into a list of its leaves. Can you trace how this is working? Think first about what the operation `fun a -> fun k -> a :: k a` does when you apply it to a plain `int`, and the continuation `fun _ -> []`. Then given what we've said about `tree_monadize`, what should we expect `tree_monadize (fun a -> fun k -> a :: k a` to do?
 
-The continuation monad is amazingly flexible; we can use it to
+The Continuation monad is amazingly flexible; we can use it to
 simulate some of the computations performed above.  To see how, first
 note that an interestingly uninteresting thing happens if we use
 `continuation_unit` as our first argument to `tree_monadize`, and then
@@ -300,18 +300,18 @@ interesting functions for the first argument of `tree_monadize`:
        - : int = 5
 
 We could simulate the tree state example too, but it would require
-generalizing the type of the continuation monad to
+generalizing the type of the Continuation monad to
 
        type ('a, 'b, 'c) continuation = ('a -> 'b) -> 'c;;
 
 If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml).
 
 
-The binary tree monad
+The Binary Tree monad
 ---------------------
 
 Of course, by now you may have realized that we have discovered a new
-monad, the binary tree monad:
+monad, the Binary Tree monad:
 
        type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
        let tree_unit (a: 'a) = Leaf a;;