week11 tweaks
[lambda.git] / manipulating_trees_with_monads.mdwn
index 379ead5..d0897ef 100644 (file)
@@ -92,6 +92,7 @@ a reader monad---is to have the treemap function return a (monadized)
 tree that is ready to accept any `int -> int` function and produce the
 updated tree.
 
+\tree (. (. (f 2) (f 3)) (. (f 5) (. (f 7) (f 11))))
 
        \f      .
           _____|____
@@ -262,25 +263,25 @@ That is, nothing happens.  But we can begin to substitute more
 interesting functions for the first argument of `treemonadizer`:
 
        (* Simulating the tree reader: distributing a operation over the leaves *)
-       # treemonadizer (fun a c -> c (square a)) t1 (fun i -> i);;
+       # treemonadizer (fun a k -> k (square a)) t1 (fun i -> i);;
        - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
        (* Simulating the int list tree list *)
-       # treemonadizer (fun a c -> c [a; square a]) t1 (fun i -> i);;
+       # treemonadizer (fun a k -> k [a; square a]) t1 (fun i -> i);;
        - : int list tree =
        Node
         (Node (Leaf [2; 4], Leaf [3; 9]),
          Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))
 
        (* Counting leaves *)
-       # treemonadizer (fun a c -> 1 + c a) t1 (fun i -> 0);;
+       # treemonadizer (fun a k -> 1 + k a) t1 (fun i -> 0);;
        - : int = 5
 
 We could simulate the tree state example too, but it would require
 generalizing the type of the continuation monad to
 
-       type ('a -> 'b -> 'c) continuation = ('a -> 'b) -> 'c;;
+       type ('a, 'b, 'c) continuation = ('a -> 'b) -> 'c;;
 
 The binary tree monad
 ---------------------
@@ -297,29 +298,29 @@ monad, the binary tree monad:
 
 For once, let's check the Monad laws.  The left identity law is easy:
 
-    Left identity: bind (unit a) f = bind (Leaf a) f = fa
+    Left identity: bind (unit a) f = bind (Leaf a) f = f a
 
 To check the other two laws, we need to make the following
 observation: it is easy to prove based on `tree_bind` by a simple
 induction on the structure of the first argument that the tree
 resulting from `bind u f` is a tree with the same strucure as `u`,
-except that each leaf `a` has been replaced with `fa`:
+except that each leaf `a` has been replaced with `f a`:
 
-\tree (. (fa1) (. (. (. (fa2)(fa3)) (fa4)) (fa5)))
+\tree (. (f a1) (. (. (. (f a2) (f a3)) (f a4)) (f a5)))
 
                        .                         .
                      __|__                     __|__
                      |   |                     |   |
-                     a1  .                    fa1  .
+                     a1  .                   a1  .
                         _|__                     __|__
                         |  |                     |   |
-                        .  a5                    .  fa5
+                        .  a5                    .  f a5
           bind         _|__       f   =        __|__
                        |  |                    |   |
-                       .  a4                   .  fa4
+                       .  a4                   .  f a4
                      __|__                   __|___
                      |   |                   |    |
-                     a2  a3                 fa2  fa3
+                     a2  a3                f a2  f a3
 
 Given this equivalence, the right identity law
 
@@ -336,26 +337,26 @@ As for the associative law,
 we'll give an example that will show how an inductive proof would
 proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then
 
-\tree (. (. (. (. (a1)(a2)))))
-\tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))  ))
+\tree (. (. (. (. (a1) (a2)))))
+\tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))))
 
                                                   .
                                               ____|____
                  .               .            |       |
        bind    __|__   f  =    __|_    =      .       .
                |   |           |   |        __|__   __|__
-               a1  a2         fa1 fa2       |   |   |   |
+               a1  a2        f a1 f a2      |   |   |   |
                                             a1  a1  a1  a1
 
 Now when we bind this tree to `g`, we get
 
-                  .
-              ____|____
-              |       |
-              .       .
-            __|__   __|__
-            |   |   |   |
-           ga1 ga1 ga1 ga1
+                   .
+              _____|______
+              |          |
+              .          .
+            __|__      __|__
+            |   |      |   |
+          g a1 g a1  g a1 g a1
 
 At this point, it should be easy to convince yourself that
 using the recipe on the right hand side of the associative law will