index c92065c..2ec15d6 100644 (file)
@@ -3,24 +3,26 @@
------------------------------

-This topic develops an idea based on a detailed suggestion of Ken
-Shan's.  We'll build a series of functions that operate on trees,
-doing various things, including replacing leaves, counting nodes, and
-converting a tree to a list of leaves.  The end result will be an
-application for continuations.
+This topic develops an idea based on a suggestion of Ken Shan's.
+We'll build a series of functions that operate on trees, doing various
+with a State monad, replacing leaves with a List monad, and converting
+a tree into a list of leaves with a Continuation monad.  It will turn
+out that the continuation monad can simulate the behavior of each of

From an engineering standpoint, we'll build a tree transformer that
deals in monads.  We can modify the behavior of the system by swapping
a layer of funtionality without disturbing the underlying system, for
of intensionality to an extensional grammar, but we have not yet seen
the utility of replacing one monad with other.

First, we'll be needing a lot of trees for the remainder of the
course.  Here again is a type constructor for leaf-labeled, binary trees:

-    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree)
+    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree);;

[How would you adjust the type constructor to allow for labels on the
internal nodes?]
@@ -30,7 +32,7 @@ We'll be using trees where the nodes are integers, e.g.,

let t1 = Node (Node (Leaf 2, Leaf 3),
Node (Leaf 5, Node (Leaf 7,
-                                             Leaf 11)))
+                                           Leaf 11)))
.
___|___
|     |
@@ -71,24 +73,25 @@ structure of the tree unchanged.  For instance:
14   22

We could have built the doubling operation right into the `tree_map`
-code.  However, because we've left what to do to each leaf as a parameter, we can
-decide to do something else to the leaves without needing to rewrite
-`tree_map`.  For instance, we can easily square each leaf instead by
-supplying the appropriate `int -> int` operation in place of `double`:
+code.  However, because we've made what to do to each leaf a
+parameter, we can decide to do something else to the leaves without
+needing to rewrite `tree_map`.  For instance, we can easily square
+each leaf instead by supplying the appropriate `int -> int` operation
+in place of `double`:

let square i = i * i;;
tree_map square t1;;
-       - : int tree =ppp
+       - : int tree =
Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))

-Note that what `tree_map` does is take some global, contextual
+Note that what `tree_map` does is take some unchanging contextual
information---what to do to each leaf---and supplies that information
to each subpart of the computation.  In other words, `tree_map` has the

In general, we're on a journey of making our `tree_map` function more and
more flexible.  So the next step---combining the tree transformer with
tree that is ready to accept any `int -> int` function and produce the
updated tree.

@@ -106,16 +109,25 @@ updated tree.
f 7  f 11

That is, we want to transform the ordinary tree `t1` (of type `int
-tree`) into a reader object of type `(int -> int) -> int tree`: something
-that, when you apply it to an `int -> int` function `f` returns an `int
-tree` in which each leaf `i` has been replaced with `f i`.
-
-With previous readers, we always knew which kind of environment to
-expect: either an assignment function (the original calculator
-simulation), a world (the intensionality monad), an integer (the
-enough to expect that our "environment" will be some function of type
-`int -> int`.
+tree`) into a reader monadic object of type `(int -> int) -> int
+tree`: something that, when you apply it to an `int -> int` function
+`f` returns an `int tree` in which each leaf `i` has been replaced
+with `f i`.
+
+[Application note: this kind of reader object could provide a model
+for Kaplan's characters.  It turns an ordinary tree into one that
+expects contextual information (here, the `&lambda; f`) that can be
+used to compute the content of indexicals embedded arbitrarily deeply
+in the tree.]
+
+which kind of environment to expect: either an assignment function, as
+in the original calculator simulation; a world, as in the
+monad; etc.  In the present case, we expect that our "environment"
+will be some function of type `int -> int`. "Looking up" some `int` in
+the environment will return us the `int` that comes out the other side
+of that function.

type 'a reader = (int -> int) -> 'a;;  (* mnemonic: e for environment *)
let reader_unit (a : 'a) : 'a reader = fun _ -> a;;
@@ -135,16 +147,44 @@ But we can do this:

let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
match t with
-           | Leaf i -> reader_bind (f i) (fun i' -> reader_unit (Leaf i'))
-           | Node (l, r) -> reader_bind (tree_monadize f l) (fun x ->
+           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
+           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->

This function says: give me a function `f` that knows how to turn
-something of type `'a` into an `'b reader`, and I'll show you how to
-turn an `'a tree` into an `'b tree reader`.  In more fanciful terms,
-the `tree_monadize` function builds plumbing that connects all of the
-leaves of a tree into one connected monadic network; it threads the
+something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to---and I'll show you how to
+turn an `'a tree` into an `'b tree reader`.  That is, if you show me how to do this:
+
+                     ------------
+         1     --->  |    1     |
+                     ------------
+
+then I'll give you back the ability to do this:
+
+                     ____________
+         .           |    .     |
+       __|___  --->  |  __|___  |
+       |    |        |  |    |  |
+       1    2        |  1    2  |
+                     ------------
+
+And how will that boxed tree behave? Whatever actions you perform on it will be transmitted down to corresponding operations on its leaves. For instance, our `int reader` expects an `int -> int` environment. If supplying environment `e` to our `int reader` doubles the contained `int`:
+
+                     ------------
+         1     --->  |    1     |  applied to e  ~~>  2
+                     ------------
+
+Then we can expect that supplying it to our `int tree reader` will double all the leaves:
+
+                     ____________
+         .           |    .     |                      .
+       __|___  --->  |  __|___  | applied to e  ~~>  __|___
+       |    |        |  |    |  |                    |    |
+       1    2        |  1    2  |                    2    4
+                     ------------
+
+In more fanciful terms, the `tree_monadize` function builds plumbing that connects all of the leaves of a tree into one connected monadic network; it threads the

@@ -161,10 +201,10 @@ result:
- : int tree =
Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))

-Now that we have a tree transformer that accepts a reader monad as a
+Now that we have a tree transformer that accepts a *reader* monad as a
parameter, we can see what it would take to swap in a different monad.

-For instance, we can use a state monad to count the number of leaves in
+For instance, we can use a State monad to count the number of leaves in
the tree.

type 'a state = int -> 'a * int;;
@@ -177,14 +217,14 @@ modification whatsoever, except for replacing the (parametric) type

let rec tree_monadize (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
match t with
-           | Leaf i -> state_bind (f i) (fun i' -> state_unit (Leaf i'))
-           | Node (l, r) -> state_bind (tree_monadize f l) (fun x ->
-                              state_bind (tree_monadize f r) (fun y ->
-                                state_unit (Node (x, y))));;
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f l) (fun l' ->
+                              state_bind (tree_monadize f r) (fun r' ->
+                                state_unit (Node (l', r'))));;

Then we can count the number of leaves in the tree:

-       # tree_monadize (fun a s -> (a, s+1)) t1 0;;
+       # tree_monadize (fun a -> fun s -> (a, s+1)) t1 0;;
- : int tree * int =
(Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 5)

@@ -192,13 +232,52 @@ Then we can count the number of leaves in the tree:
___|___
|     |
.     .
-       _|__  _|__
+       _|__  _|__         , 5
|  |  |  |
2  3  5  .
_|__
|  |
7  11

+Note that the value returned is a pair consisting of a tree and an
+integer, 5, which represents the count of the leaves in the tree.
+
+Why does this work? Because the operation `fun a -> fun s -> (a, s+1)`
+takes an `int` and wraps it in an `int state` monadic box that
+increments the state. When we give that same operations to our
+`tree_monadize` function, it then wraps an `int tree` in a box, one
+that does the same state-incrementing for each of its leaves.
+
+We can use the state monad to replace leaves with a number
+corresponding to that leave's ordinal position.  When we do so, we
+reveal the order in which the monadic tree forces evaluation:
+
+        # tree_monadize (fun a -> fun s -> (s+1, s+1)) t1 0;;
+        - : int tree * int =
+        (Node (Node (Leaf 1, Leaf 2), Node (Leaf 3, Node (Leaf 4, Leaf 5))), 5)
+
+The key thing to notice is that instead of copying `a` into the
+monadic box, we throw away the `a` and put a copy of the state in
+
+Reversing the order requires reversing the order of the state_bind
+operations.  It's not obvious that this will type correctly, so think
+it through:
+
+       let rec tree_monadize_rev (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
+           match t with
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f r) (fun r' ->
+                              state_bind (tree_monadize f l) (fun l' ->
+                                state_unit (Node (l', r'))));;
+
+        # tree_monadize_rev (fun a -> fun s -> (s+1, s+1)) t1 0;;
+        - : int tree * int =
+        (Node (Node (Leaf 5, Leaf 4), Node (Leaf 3, Node (Leaf 2, Leaf 1))), 5)
+
+We will need below to depend on controlling the order in which nodes
+are visited when we use the continuation monad to solve the
+same-fringe problem.

One more revealing example before getting down to business: replacing
`state` everywhere in `tree_monadize` with `list` gives us
@@ -211,12 +290,13 @@ One more revealing example before getting down to business: replacing

Unlike the previous cases, instead of turning a tree into a function
from some input to a result, this transformer replaces each `int` with
-a list of `int`'s.
-
-<!--
-FIXME: We don't make it clear why the fun has to be int -> int list list, instead of int -> int list
--->
+a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment.

+[Why is the argument to `tree_monadize` `int -> int list list` instead
+of `int -> int list`?  Well, as usual, the List monad bind operation
+will erase the outer list box, so if we want to replace the leaves
+with lists, we have to nest the replacement lists inside a disposable
+box.]

Now for the main point.  What if we wanted to convert a tree to a list
of leaves?
@@ -227,27 +307,28 @@ of leaves?

let rec tree_monadize (f : 'a -> ('b, 'r) continuation) (t : 'a tree) : ('b tree, 'r) continuation =
match t with
-           | Leaf i -> continuation_bind (f i) (fun i' -> continuation_unit (Leaf i'))
-           | Node (l, r) -> continuation_bind (tree_monadize f l) (fun x ->
-                              continuation_bind (tree_monadize f r) (fun y ->
-                                continuation_unit (Node (x, y))));;
+           | Leaf a -> continuation_bind (f a) (fun b -> continuation_unit (Leaf b))
+           | Node (l, r) -> continuation_bind (tree_monadize f l) (fun l' ->
+                              continuation_bind (tree_monadize f r) (fun r' ->
+                                continuation_unit (Node (l', r'))));;
+
+We use the Continuation monad described above, and insert the
+`continuation` type in the appropriate place in the `tree_monadize` code. Then if we give the `tree_monadize` function an operation that converts `int`s into `'b`-wrapping Continuation monads, it will give us back a way to turn `int tree`s into corresponding `'b tree`-wrapping Continuation monads.

-We use the continuation monad described above, and insert the
-`continuation` type in the appropriate place in the `tree_monadize` code.
-We then compute:
+So for example, we compute:

-       # tree_monadize (fun a k -> a :: (k a)) t1 (fun t -> []);;
+       # tree_monadize (fun a -> fun k -> a :: k a) t1 (fun t -> []);;
- : int list = [2; 3; 5; 7; 11]

-We have found a way of collapsing a tree into a list of its leaves.
+We have found a way of collapsing a tree into a list of its leaves. Can you trace how this is working? Think first about what the operation `fun a -> fun k -> a :: k a` does when you apply it to a plain `int`, and the continuation `fun _ -> []`. Then given what we've said about `tree_monadize`, what should we expect `tree_monadize (fun a -> fun k -> a :: k a` to do?

-The continuation monad is amazingly flexible; we can use it to
+The Continuation monad is amazingly flexible; we can use it to
simulate some of the computations performed above.  To see how, first
note that an interestingly uninteresting thing happens if we use
`continuation_unit` as our first argument to `tree_monadize`, and then
apply the result to the identity function:

-       # tree_monadize continuation_unit t1 (fun i -> i);;
+       # tree_monadize continuation_unit t1 (fun t -> t);;
- : int tree =
Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))

@@ -255,41 +336,66 @@ That is, nothing happens.  But we can begin to substitute more
interesting functions for the first argument of `tree_monadize`:

(* Simulating the tree reader: distributing a operation over the leaves *)
-       # tree_monadize (fun a k -> k (square a)) t1 (fun i -> i);;
+       # tree_monadize (fun a -> fun k -> k (square a)) t1 (fun t -> t);;
- : int tree =
Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))

(* Simulating the int list tree list *)
-       # tree_monadize (fun a k -> k [a; square a]) t1 (fun i -> i);;
+       # tree_monadize (fun a -> fun k -> k [a; square a]) t1 (fun t -> t);;
- : int list tree =
Node
(Node (Leaf [2; 4], Leaf [3; 9]),
Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))

(* Counting leaves *)
-       # tree_monadize (fun a k -> 1 + k a) t1 (fun i -> 0);;
+       # tree_monadize (fun a -> fun k -> 1 + k a) t1 (fun t -> 0);;
- : int = 5

We could simulate the tree state example too, but it would require
-generalizing the type of the continuation monad to
+generalizing the type of the Continuation monad to

type ('a, 'b, 'c) continuation = ('a -> 'b) -> 'c;;

If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml).

+Using continuations to solve the same fringe problem
+----------------------------------------------------

+We've seen two solutions to the same fringe problem so far.
+The simplest is to map each tree to a list of its leaves, then compare
+the lists.  But if the fringes differ in an early position, we've
+wasted our time visiting the rest of the tree.
+
+The second solution was to use tree zippers and mutable state to
+simulate coroutines.  We would unzip the first tree until we found the
+next leaf, then store the zipper structure in the mutable variable
+while we turned our attention to the other tree.  Because we stop as
+soon as we find the first mismatched leaf, this solution does not have
+the flaw just mentioned of the solution that maps both trees to a list
+of leaves before beginning comparison.
+
+Since zippers are just continuations reified, we expect that the
+solution in terms of zippers can be reworked using continuations, and
+this is indeed the case.  To make this work in the most convenient
+way, we need to use the fully general type for continuations just mentioned.
+
+tree_monadize (fun a k -> a, k a) t1 (fun t -> 0);;
+
+
+
---------------------

Of course, by now you may have realized that we have discovered a new
+so are trees.  Here is the type constructor, unit, and bind:

type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
-       let tree_unit (a: 'a) = Leaf a;;
+       let tree_unit (a: 'a) : 'a tree = Leaf a;;
let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
match u with
| Leaf a -> f a
-           | Node (l, r) -> Node ((tree_bind l f), (tree_bind r f));;
+           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;

For once, let's check the Monad laws.  The left identity law is easy:

@@ -364,3 +470,29 @@ called a
that is intended to represent non-deterministic computations as a tree.

+
+What's this have to do with tree\_mondadize?
+--------------------------------------------
+
+So we've defined a Tree monad:
+
+       type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
+       let tree_unit (a: 'a) : 'a tree = Leaf a;;
+       let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
+           match u with
+           | Leaf a -> f a
+           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;
+
+What's this have to do with the `tree_monadize` functions we defined earlier?
+
+       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
+           match t with
+           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
+           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->