edits
[lambda.git] / manipulating_trees_with_monads.mdwn
index c279c38..2ec15d6 100644 (file)
@@ -3,24 +3,26 @@
 Manipulating trees with monads
 ------------------------------
 
-This topic develops an idea based on a detailed suggestion of Ken
-Shan's.  We'll build a series of functions that operate on trees,
-doing various things, including replacing leaves, counting nodes, and
-converting a tree to a list of leaves.  The end result will be an
-application for continuations.
+This topic develops an idea based on a suggestion of Ken Shan's.
+We'll build a series of functions that operate on trees, doing various
+things, including updating leaves with a Reader monad, counting nodes
+with a State monad, replacing leaves with a List monad, and converting
+a tree into a list of leaves with a Continuation monad.  It will turn
+out that the continuation monad can simulate the behavior of each of
+the other monads.
 
 From an engineering standpoint, we'll build a tree transformer that
 deals in monads.  We can modify the behavior of the system by swapping
 one monad for another.  We've already seen how adding a monad can add
 a layer of funtionality without disturbing the underlying system, for
-instance, in the way that the reader monad allowed us to add a layer
+instance, in the way that the Reader monad allowed us to add a layer
 of intensionality to an extensional grammar, but we have not yet seen
 the utility of replacing one monad with other.
 
 First, we'll be needing a lot of trees for the remainder of the
 course.  Here again is a type constructor for leaf-labeled, binary trees:
 
-    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree)
+    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree);;
 
 [How would you adjust the type constructor to allow for labels on the
 internal nodes?]
@@ -28,14 +30,14 @@ internal nodes?]
 We'll be using trees where the nodes are integers, e.g.,
 
 
-       let t1 = Node ((Node ((Leaf 2), (Leaf 3))),
-                      (Node ((Leaf 5),(Node ((Leaf 7),
-                                             (Leaf 11))))))
+       let t1 = Node (Node (Leaf 2, Leaf 3),
+                      Node (Leaf 5, Node (Leaf 7,
+                                           Leaf 11)))
            .
         ___|___
         |     |
         .     .
-       _|__  _|__
+       _|_   _|__
        |  |  |  |
        2  3  5  .
                _|__
@@ -44,18 +46,18 @@ We'll be using trees where the nodes are integers, e.g.,
 
 Our first task will be to replace each leaf with its double:
 
-       let rec treemap (newleaf : 'a -> 'b) (t : 'a tree) : 'b tree =
+       let rec tree_map (leaf_modifier : 'a -> 'b) (t : 'a tree) : 'b tree =
          match t with
-           | Leaf x -> Leaf (newleaf x)
-           | Node (l, r) -> Node ((treemap newleaf l),
-                                  (treemap newleaf r));;
+           | Leaf i -> Leaf (leaf_modifier i)
+           | Node (l, r) -> Node (tree_map leaf_modifier l,
+                                  tree_map leaf_modifier r);;
 
-`treemap` takes a function that transforms old leaves into new leaves,
+`tree_map` takes a function that transforms old leaves into new leaves,
 and maps that function over all the leaves in the tree, leaving the
 structure of the tree unchanged.  For instance:
 
        let double i = i + i;;
-       treemap double t1;;
+       tree_map double t1;;
        - : int tree =
        Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
        
@@ -70,139 +72,217 @@ structure of the tree unchanged.  For instance:
                |    |
                14   22
 
-We could have built the doubling operation right into the `treemap`
-code.  However, because what to do to each leaf is a parameter, we can
-decide to do something else to the leaves without needing to rewrite
-`treemap`.  For instance, we can easily square each leaf instead by
-supplying the appropriate `int -> int` operation in place of `double`:
+We could have built the doubling operation right into the `tree_map`
+code.  However, because we've made what to do to each leaf a
+parameter, we can decide to do something else to the leaves without
+needing to rewrite `tree_map`.  For instance, we can easily square
+each leaf instead by supplying the appropriate `int -> int` operation
+in place of `double`:
 
-       let square x = x * x;;
-       treemap square t1;;
-       - : int tree =ppp
+       let square i = i * i;;
+       tree_map square t1;;
+       - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
-Note that what `treemap` does is take some global, contextual
+Note that what `tree_map` does is take some unchanging contextual
 information---what to do to each leaf---and supplies that information
-to each subpart of the computation.  In other words, `treemap` has the
-behavior of a reader monad.  Let's make that explicit.
+to each subpart of the computation.  In other words, `tree_map` has the
+behavior of a Reader monad.  Let's make that explicit.
 
-In general, we're on a journey of making our treemap function more and
+In general, we're on a journey of making our `tree_map` function more and
 more flexible.  So the next step---combining the tree transformer with
-a reader monad---is to have the treemap function return a (monadized)
-tree that is ready to accept any `int->int` function and produce the
+a Reader monad---is to have the `tree_map` function return a (monadized)
+tree that is ready to accept any `int -> int` function and produce the
 updated tree.
 
-\tree (. (. (f2) (f3))(. (f5) (.(f7)(f11))))
+\tree (. (. (f 2) (f 3)) (. (f 5) (. (f 7) (f 11))))
 
-       \f    .
-         ____|____
-         |       |
-         .       .
-       __|__   __|__
-       |   |   |   |
-       f2  f3  f5  .
-                 __|___
-                 |    |
-                 f7  f11
+       \f      .
+          _____|____
+          |        |
+          .        .
+        __|___   __|___
+        |    |   |    |
+       f 2  f 3  f 5  .
+                    __|___
+                    |    |
+                   f 7  f 11
 
 That is, we want to transform the ordinary tree `t1` (of type `int
-tree`) into a reader object of type `(int->int)-> int tree`: something
-that, when you apply it to an `int->int` function returns an `int
-tree` in which each leaf `x` has been replaced with `(f x)`.
+tree`) into a reader monadic object of type `(int -> int) -> int
+tree`: something that, when you apply it to an `int -> int` function
+`f` returns an `int tree` in which each leaf `i` has been replaced
+with `f i`.
+
+[Application note: this kind of reader object could provide a model
+for Kaplan's characters.  It turns an ordinary tree into one that
+expects contextual information (here, the `λ f`) that can be
+used to compute the content of indexicals embedded arbitrarily deeply
+in the tree.]
+
+With our previous applications of the Reader monad, we always knew
+which kind of environment to expect: either an assignment function, as
+in the original calculator simulation; a world, as in the
+intensionality monad; an individual, as in the Jacobson-inspired link
+monad; etc.  In the present case, we expect that our "environment"
+will be some function of type `int -> int`. "Looking up" some `int` in
+the environment will return us the `int` that comes out the other side
+of that function.
+
+       type 'a reader = (int -> int) -> 'a;;  (* mnemonic: e for environment *)
+       let reader_unit (a : 'a) : 'a reader = fun _ -> a;;
+       let reader_bind (u: 'a reader) (f : 'a -> 'b reader) : 'b reader = fun e -> f (u e) e;;
+
+It would be a simple matter to turn an *integer* into an `int reader`:
+
+       let int_readerize : int -> int reader = fun (a : int) -> fun (modifier : int -> int) -> modifier a;;
+       int_readerize 2 (fun i -> i + i);;
+       - : int = 4
 
-With previous readers, we always knew which kind of environment to
-expect: either an assignment function (the original calculator
-simulation), a world (the intensionality monad), an integer (the
-Jacobson-inspired link monad), etc.  In this situation, it will be
-enough for now to expect that our reader will expect a function of
-type `int->int`.
+But how do we do the analagous transformation when our `int`s are scattered over the leaves of a tree? How do we turn an `int tree` into a reader?
+A tree is not the kind of thing that we can apply a
+function of type `int -> int` to.
 
-       type 'a reader = (int->int) -> 'a;;  (* mnemonic: e for environment *)
-       let reader_unit (x : 'a) : 'a reader = fun _ -> x;;
-       let reader_bind (u: 'a reader) (f : 'a -> 'c reader) : 'c reader = fun e -> f (u e) e;;
+But we can do this:
 
-It's easy to figure out how to turn an `int` into an `int reader`:
+       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
+           match t with
+           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
+           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->
+                              reader_bind (tree_monadize f r) (fun r' ->
+                                reader_unit (Node (l', r'))));;
 
-       let int2int_reader (x : 'a): 'b reader = fun (op : 'a -> 'b) -> op x;;
-       int2int_reader 2 (fun i -> i + i);;
-       - : int = 4
+This function says: give me a function `f` that knows how to turn
+something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to---and I'll show you how to
+turn an `'a tree` into an `'b tree reader`.  That is, if you show me how to do this:
 
-But what do we do when the integers are scattered over the leaves of a
-tree?  A binary tree is not the kind of thing that we can apply a
-function of type `int->int` to.
+                     ------------
+         1     --->  |    1     |
+                     ------------
 
-       let rec treemonadizer (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
-           match t with
-           | Leaf x -> reader_bind (f x) (fun x' -> reader_unit (Leaf x'))
-           | Node (l, r) -> reader_bind (treemonadizer f l) (fun x ->
-                              reader_bind (treemonadizer f r) (fun y ->
-                                reader_unit (Node (x, y))));;
+then I'll give you back the ability to do this:
 
-This function says: give me a function `f` that knows how to turn
-something of type `'a` into an `'b reader`, and I'll show you how to
-turn an `'a tree` into an `'a tree reader`.  In more fanciful terms,
-the `treemonadizer` function builds plumbing that connects all of the
-leaves of a tree into one connected monadic network; it threads the
-monad through the leaves.
+                     ____________
+         .           |    .     |
+       __|___  --->  |  __|___  |
+       |    |        |  |    |  |
+       1    2        |  1    2  |
+                     ------------
+
+And how will that boxed tree behave? Whatever actions you perform on it will be transmitted down to corresponding operations on its leaves. For instance, our `int reader` expects an `int -> int` environment. If supplying environment `e` to our `int reader` doubles the contained `int`:
+
+                     ------------
+         1     --->  |    1     |  applied to e  ~~>  2
+                     ------------
+
+Then we can expect that supplying it to our `int tree reader` will double all the leaves:
+
+                     ____________
+         .           |    .     |                      .
+       __|___  --->  |  __|___  | applied to e  ~~>  __|___
+       |    |        |  |    |  |                    |    |
+       1    2        |  1    2  |                    2    4
+                     ------------
 
-       # treemonadizer int2int_reader t1 (fun i -> i + i);;
+In more fanciful terms, the `tree_monadize` function builds plumbing that connects all of the leaves of a tree into one connected monadic network; it threads the
+`'b reader` monad through the original tree's leaves.
+
+       # tree_monadize int_readerize t1 double;;
        - : int tree =
        Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
 
 Here, our environment is the doubling function (`fun i -> i + i`).  If
-we apply the very same `int tree reader` (namely, `treemonadizer
-int2int_reader t1`) to a different `int->int` function---say, the
+we apply the very same `int tree reader` (namely, `tree_monadize
+int_readerize t1`) to a different `int -> int` function---say, the
 squaring function, `fun i -> i * i`---we get an entirely different
 result:
 
-       # treemonadizer int2int_reader t1 (fun i -> i * i);;
+       # tree_monadize int_readerize t1 square;;
        - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
-Now that we have a tree transformer that accepts a monad as a
+Now that we have a tree transformer that accepts a *reader* monad as a
 parameter, we can see what it would take to swap in a different monad.
-For instance, we can use a state monad to count the number of nodes in
+
+For instance, we can use a State monad to count the number of leaves in
 the tree.
 
        type 'a state = int -> 'a * int;;
-       let state_unit x i = (x, i+.5);;
-       let state_bind u f i = let (a, i') = u i in f a (i'+.5);;
+       let state_unit a = fun s -> (a, s);;
+       let state_bind u f = fun s -> let (a, s') = u s in f a s';;
 
-Gratifyingly, we can use the `treemonadizer` function without any
+Gratifyingly, we can use the `tree_monadize` function without any
 modification whatsoever, except for replacing the (parametric) type
-`reader` with `state`:
+`'b reader` with `'b state`, and substituting in the appropriate unit and bind:
 
-       let rec treemonadizer (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
+       let rec tree_monadize (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
            match t with
-           | Leaf x -> state_bind (f x) (fun x' -> state_unit (Leaf x'))
-           | Node (l, r) -> state_bind (treemonadizer f l) (fun x ->
-                              state_bind (treemonadizer f r) (fun y ->
-                                state_unit (Node (x, y))));;
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f l) (fun l' ->
+                              state_bind (tree_monadize f r) (fun r' ->
+                                state_unit (Node (l', r'))));;
 
-Then we can count the number of nodes in the tree:
+Then we can count the number of leaves in the tree:
 
-       # treemonadizer state_unit t1 0;;
+       # tree_monadize (fun a -> fun s -> (a, s+1)) t1 0;;
        - : int tree * int =
-       (Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 13)
+       (Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 5)
        
            .
         ___|___
         |     |
         .     .
-       _|__  _|__
+       _|__  _|__         , 5
        |  |  |  |
        2  3  5  .
                _|__
                |  |
                7  11
 
-Notice that we've counted each internal node twice---it's a good
-exercise to adjust the code to count each node once.
+Note that the value returned is a pair consisting of a tree and an
+integer, 5, which represents the count of the leaves in the tree.
+
+Why does this work? Because the operation `fun a -> fun s -> (a, s+1)`
+takes an `int` and wraps it in an `int state` monadic box that
+increments the state. When we give that same operations to our
+`tree_monadize` function, it then wraps an `int tree` in a box, one
+that does the same state-incrementing for each of its leaves.
+
+We can use the state monad to replace leaves with a number
+corresponding to that leave's ordinal position.  When we do so, we
+reveal the order in which the monadic tree forces evaluation:
+
+        # tree_monadize (fun a -> fun s -> (s+1, s+1)) t1 0;;
+        - : int tree * int =
+        (Node (Node (Leaf 1, Leaf 2), Node (Leaf 3, Node (Leaf 4, Leaf 5))), 5)
+
+The key thing to notice is that instead of copying `a` into the
+monadic box, we throw away the `a` and put a copy of the state in
+instead.
+
+Reversing the order requires reversing the order of the state_bind
+operations.  It's not obvious that this will type correctly, so think
+it through:
+
+       let rec tree_monadize_rev (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
+           match t with
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f r) (fun r' ->
+                              state_bind (tree_monadize f l) (fun l' ->
+                                state_unit (Node (l', r'))));;
+
+        # tree_monadize_rev (fun a -> fun s -> (s+1, s+1)) t1 0;;
+        - : int tree * int =
+        (Node (Node (Leaf 5, Leaf 4), Node (Leaf 3, Node (Leaf 2, Leaf 1))), 5)
+
+We will need below to depend on controlling the order in which nodes
+are visited when we use the continuation monad to solve the
+same-fringe problem.
 
 One more revealing example before getting down to business: replacing
-`state` everywhere in `treemonadizer` with `list` gives us
+`state` everywhere in `tree_monadize` with `list` gives us
 
-       # treemonadizer (fun x -> [ [x; square x] ]) t1;;
+       # tree_monadize (fun i -> [ [i; square i] ]) t1;;
        - : int list tree list =
        [Node
          (Node (Leaf [2; 4], Leaf [3; 9]),
@@ -210,103 +290,138 @@ One more revealing example before getting down to business: replacing
 
 Unlike the previous cases, instead of turning a tree into a function
 from some input to a result, this transformer replaces each `int` with
-a list of `int`'s.
+a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment.
+
+[Why is the argument to `tree_monadize` `int -> int list list` instead
+of `int -> int list`?  Well, as usual, the List monad bind operation
+will erase the outer list box, so if we want to replace the leaves
+with lists, we have to nest the replacement lists inside a disposable
+box.]
 
 Now for the main point.  What if we wanted to convert a tree to a list
 of leaves?
 
        type ('a, 'r) continuation = ('a -> 'r) -> 'r;;
-       let continuation_unit x c = c x;;
-       let continuation_bind u f c = u (fun a -> f a c);;
+       let continuation_unit a = fun k -> k a;;
+       let continuation_bind u f = fun k -> u (fun a -> f a k);;
        
-       let rec treemonadizer (f : 'a -> ('b, 'r) continuation) (t : 'a tree) : ('b tree, 'r) continuation =
+       let rec tree_monadize (f : 'a -> ('b, 'r) continuation) (t : 'a tree) : ('b tree, 'r) continuation =
            match t with
-           | Leaf x -> continuation_bind (f x) (fun x' -> continuation_unit (Leaf x'))
-           | Node (l, r) -> continuation_bind (treemonadizer f l) (fun x ->
-                              continuation_bind (treemonadizer f r) (fun y ->
-                                continuation_unit (Node (x, y))));;
+           | Leaf a -> continuation_bind (f a) (fun b -> continuation_unit (Leaf b))
+           | Node (l, r) -> continuation_bind (tree_monadize f l) (fun l' ->
+                              continuation_bind (tree_monadize f r) (fun r' ->
+                                continuation_unit (Node (l', r'))));;
+
+We use the Continuation monad described above, and insert the
+`continuation` type in the appropriate place in the `tree_monadize` code. Then if we give the `tree_monadize` function an operation that converts `int`s into `'b`-wrapping Continuation monads, it will give us back a way to turn `int tree`s into corresponding `'b tree`-wrapping Continuation monads.
 
-We use the continuation monad described above, and insert the
-`continuation` type in the appropriate place in the `treemonadizer` code.
-We then compute:
+So for example, we compute:
 
-       # treemonadizer (fun a c -> a :: (c a)) t1 (fun t -> []);;
+       # tree_monadize (fun a -> fun k -> a :: k a) t1 (fun t -> []);;
        - : int list = [2; 3; 5; 7; 11]
 
-We have found a way of collapsing a tree into a list of its leaves.
+We have found a way of collapsing a tree into a list of its leaves. Can you trace how this is working? Think first about what the operation `fun a -> fun k -> a :: k a` does when you apply it to a plain `int`, and the continuation `fun _ -> []`. Then given what we've said about `tree_monadize`, what should we expect `tree_monadize (fun a -> fun k -> a :: k a` to do?
 
-The continuation monad is amazingly flexible; we can use it to
+The Continuation monad is amazingly flexible; we can use it to
 simulate some of the computations performed above.  To see how, first
-note that an interestingly uninteresting thing happens if we use the
-continuation unit as our first argument to `treemonadizer`, and then
+note that an interestingly uninteresting thing happens if we use
+`continuation_unit` as our first argument to `tree_monadize`, and then
 apply the result to the identity function:
 
-       # treemonadizer continuation_unit t1 (fun x -> x);;
+       # tree_monadize continuation_unit t1 (fun t -> t);;
        - : int tree =
        Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))
 
 That is, nothing happens.  But we can begin to substitute more
-interesting functions for the first argument of `treemonadizer`:
+interesting functions for the first argument of `tree_monadize`:
 
        (* Simulating the tree reader: distributing a operation over the leaves *)
-       # treemonadizer (fun a c -> c (square a)) t1 (fun x -> x);;
+       # tree_monadize (fun a -> fun k -> k (square a)) t1 (fun t -> t);;
        - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
        (* Simulating the int list tree list *)
-       # treemonadizer (fun a c -> c [a; square a]) t1 (fun x -> x);;
+       # tree_monadize (fun a -> fun k -> k [a; square a]) t1 (fun t -> t);;
        - : int list tree =
        Node
         (Node (Leaf [2; 4], Leaf [3; 9]),
          Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))
 
        (* Counting leaves *)
-       # treemonadizer (fun a c -> 1 + c a) t1 (fun x -> 0);;
+       # tree_monadize (fun a -> fun k -> 1 + k a) t1 (fun t -> 0);;
        - : int = 5
 
 We could simulate the tree state example too, but it would require
-generalizing the type of the continuation monad to
+generalizing the type of the Continuation monad to
+
+       type ('a, 'b, 'c) continuation = ('a -> 'b) -> 'c;;
+
+If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml).
+
+Using continuations to solve the same fringe problem
+----------------------------------------------------
+
+We've seen two solutions to the same fringe problem so far.  
+The simplest is to map each tree to a list of its leaves, then compare
+the lists.  But if the fringes differ in an early position, we've
+wasted our time visiting the rest of the tree. 
 
-       type ('a -> 'b -> 'c) continuation = ('a -> 'b) -> 'c;;
+The second solution was to use tree zippers and mutable state to
+simulate coroutines.  We would unzip the first tree until we found the
+next leaf, then store the zipper structure in the mutable variable
+while we turned our attention to the other tree.  Because we stop as
+soon as we find the first mismatched leaf, this solution does not have
+the flaw just mentioned of the solution that maps both trees to a list
+of leaves before beginning comparison.
 
-The binary tree monad
+Since zippers are just continuations reified, we expect that the
+solution in terms of zippers can be reworked using continuations, and
+this is indeed the case.  To make this work in the most convenient
+way, we need to use the fully general type for continuations just mentioned.
+
+tree_monadize (fun a k -> a, k a) t1 (fun t -> 0);;
+
+
+
+The Binary Tree monad
 ---------------------
 
 Of course, by now you may have realized that we have discovered a new
-monad, the binary tree monad:
+monad, the Binary Tree monad.  Just as mere lists are in fact a monad,
+so are trees.  Here is the type constructor, unit, and bind:
 
        type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
-       let tree_unit (x: 'a) = Leaf x;;
+       let tree_unit (a: 'a) : 'a tree = Leaf a;;
        let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
            match u with
-           | Leaf x -> f x
-           | Node (l, r) -> Node ((tree_bind l f), (tree_bind r f));;
+           | Leaf a -> f a
+           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;
 
 For once, let's check the Monad laws.  The left identity law is easy:
 
-    Left identity: bind (unit a) f = bind (Leaf a) f = fa
+    Left identity: bind (unit a) f = bind (Leaf a) f = f a
 
 To check the other two laws, we need to make the following
 observation: it is easy to prove based on `tree_bind` by a simple
 induction on the structure of the first argument that the tree
 resulting from `bind u f` is a tree with the same strucure as `u`,
-except that each leaf `a` has been replaced with `fa`:
+except that each leaf `a` has been replaced with `f a`:
 
-\tree (. (fa1) (. (. (. (fa2)(fa3)) (fa4)) (fa5)))
+\tree (. (f a1) (. (. (. (f a2) (f a3)) (f a4)) (f a5)))
 
                        .                         .
                      __|__                     __|__
                      |   |                     |   |
-                     a1  .                    fa1  .
+                     a1  .                   a1  .
                         _|__                     __|__
                         |  |                     |   |
-                        .  a5                    .  fa5
+                        .  a5                    .  f a5
           bind         _|__       f   =        __|__
                        |  |                    |   |
-                       .  a4                   .  fa4
+                       .  a4                   .  f a4
                      __|__                   __|___
                      |   |                   |    |
-                     a2  a3                 fa2  fa3
+                     a2  a3                f a2  f a3
 
 Given this equivalence, the right identity law
 
@@ -318,31 +433,31 @@ falls out once we realize that
 
 As for the associative law,
 
-       Associativity: bind (bind u f) g = bind u (\a. bind (fa) g)
+       Associativity: bind (bind u f) g = bind u (\a. bind (f a) g)
 
 we'll give an example that will show how an inductive proof would
 proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then
 
-\tree (. (. (. (. (a1)(a2)))))
-\tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))  ))
+\tree (. (. (. (. (a1) (a2)))))
+\tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))))
 
                                                   .
                                               ____|____
                  .               .            |       |
        bind    __|__   f  =    __|_    =      .       .
                |   |           |   |        __|__   __|__
-               a1  a2         fa1 fa2       |   |   |   |
+               a1  a2        f a1 f a2      |   |   |   |
                                             a1  a1  a1  a1
 
 Now when we bind this tree to `g`, we get
 
-                  .
-              ____|____
-              |       |
-              .       .
-            __|__   __|__
-            |   |   |   |
-           ga1 ga1 ga1 ga1
+                   .
+              _____|______
+              |          |
+              .          .
+            __|__      __|__
+            |   |      |   |
+          g a1 g a1  g a1 g a1
 
 At this point, it should be easy to convince yourself that
 using the recipe on the right hand side of the associative law will
@@ -355,3 +470,29 @@ called a
 [SearchTree](http://hackage.haskell.org/packages/archive/tree-monad/0.2.1/doc/html/src/Control-Monad-SearchTree.html#SearchTree)
 that is intended to represent non-deterministic computations as a tree.
 
+
+What's this have to do with tree\_mondadize?
+--------------------------------------------
+
+So we've defined a Tree monad:
+
+       type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
+       let tree_unit (a: 'a) : 'a tree = Leaf a;;
+       let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
+           match u with
+           | Leaf a -> f a
+           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;
+
+What's this have to do with the `tree_monadize` functions we defined earlier?
+
+       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
+           match t with
+           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
+           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->
+                              reader_bind (tree_monadize f r) (fun r' ->
+                                reader_unit (Node (l', r'))));;
+
+... and so on for different monads?
+
+The answer is that each of those `tree_monadize` functions is adding a Tree monad *layer* to a pre-existing Reader (and so on) monad. We discuss that further here: [[Monad Transformers]].
+