index 1be499b..0d9e33d 100644 (file)
[[!toc]]

[[!toc]]

-
------------------------------

------------------------------

-This thread develops an idea based on a detailed suggestion of Ken
-Shan's.  We'll build a series of functions that operate on trees,
-doing various things, including replacing leaves, counting nodes, and
-converting a tree to a list of leaves.  The end result will be an
-application for continuations.
+This topic develops an idea based on a suggestion of Ken Shan's.
+We'll build a series of functions that operate on trees, doing various
+with a State monad, copying the tree with a List monad, and converting
+a tree into a list of leaves with a Continuation monad.  It will turn
+out that the continuation monad can simulate the behavior of each of

-From an engineering standpoint, we'll build a tree transformer that
+From an engineering standpoint, we'll build a tree machine that
deals in monads.  We can modify the behavior of the system by swapping
deals in monads.  We can modify the behavior of the system by swapping
a layer of funtionality without disturbing the underlying system, for
a layer of funtionality without disturbing the underlying system, for
-of intensionality to an extensional grammar, but we have not yet seen
-the utility of replacing one monad with other.)
+of intensionality to an extensional grammar. But we have not yet seen
+the utility of replacing one monad with other.

-First, we'll be needing a lot of trees during the remainder of the
-course.  Here's a type constructor for binary trees:
+First, we'll be needing a lot of trees for the remainder of the
+course.  Here again is a type constructor for leaf-labeled, binary trees:

-    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree)
+    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree);;

-These are trees in which the internal nodes do not have labels.  [How
-would you adjust the type constructor to allow for labels on the
+[How would you adjust the type constructor to allow for labels on the
internal nodes?]

We'll be using trees where the nodes are integers, e.g.,

internal nodes?]

We'll be using trees where the nodes are integers, e.g.,

-<pre>
-let t1 = Node ((Node ((Leaf 2), (Leaf 3))),
-               (Node ((Leaf 5),(Node ((Leaf 7),
-                                      (Leaf 11))))))
-
-    .
- ___|___
- |     |
- .     .
-_|__  _|__
-|  |  |  |
-2  3  5  .
-        _|__
-        |  |
-        7  11
-</pre>
+       let t1 = Node (Node (Leaf 2, Leaf 3),
+                      Node (Leaf 5, Node (Leaf 7,
+                                           Leaf 11)))
+           .
+        ___|___
+        |     |
+        .     .
+       _|_   _|__
+       |  |  |  |
+       2  3  5  .
+               _|__
+               |  |
+               7  11

Our first task will be to replace each leaf with its double:

Our first task will be to replace each leaf with its double:

-<pre>
-let rec treemap (newleaf:'a -> 'b) (t:'a tree):('b tree) =
-  match t with Leaf x -> Leaf (newleaf x)
-             | Node (l, r) -> Node ((treemap newleaf l),
-                                    (treemap newleaf r));;
-</pre>
-`treemap` takes a function that transforms old leaves into new leaves,
-and maps that function over all the leaves in the tree, leaving the
-structure of the tree unchanged.  For instance:
-
-<pre>
-let double i = i + i;;
-treemap double t1;;
-- : int tree =
-Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
-
-    .
- ___|____
- |      |
- .      .
-_|__  __|__
-|  |  |   |
-4  6  10  .
-        __|___
-        |    |
-        14   22
-</pre>
-
-We could have built the doubling operation right into the `treemap`
-code.  However, because what to do to each leaf is a parameter, we can
-decide to do something else to the leaves without needing to rewrite
-`treemap`.  For instance, we can easily square each leaf instead by
-supplying the appropriate `int -> int` operation in place of `double`:
-
-<pre>
-let square x = x * x;;
-treemap square t1;;
-- : int tree =ppp
-Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
-</pre>
-
-Note that what `treemap` does is take some global, contextual
+       let rec tree_map (leaf_modifier : 'a -> 'b) (t : 'a tree) : 'b tree =
+         match t with
+           | Leaf i -> Leaf (leaf_modifier i)
+           | Node (l, r) -> Node (tree_map leaf_modifier l,
+                                  tree_map leaf_modifier r);;
+
+`tree_map` takes a tree and a function that transforms old leaves into
+new leaves, and maps that function over all the leaves in the tree,
+leaving the structure of the tree unchanged.  For instance:
+
+       let double i = i + i;;
+       tree_map double t1;;
+       - : int tree =
+       Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
+
+           .
+        ___|____
+        |      |
+        .      .
+       _|__  __|__
+       |  |  |   |
+       4  6  10  .
+               __|___
+               |    |
+               14   22
+
+We could have built the doubling operation right into the `tree_map`
+code.  However, because we've made what to do to each leaf a
+parameter, we can decide to do something else to the leaves without
+needing to rewrite `tree_map`.  For instance, we can easily square
+each leaf instead, by supplying the appropriate `int -> int` operation
+in place of `double`:
+
+       let square i = i * i;;
+       tree_map square t1;;
+       - : int tree =
+       Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
+
+Note that what `tree_map` does is take some unchanging contextual
information---what to do to each leaf---and supplies that information
information---what to do to each leaf---and supplies that information
-to each subpart of the computation.  In other words, `treemap` has the
+to each subpart of the computation.  In other words, `tree_map` has the

-In general, we're on a journey of making our treemap function more and
-more flexible.  So the next step---combining the tree transducer with
-tree that is ready to accept any `int->int` function and produce the
+In general, we're on a journey of making our `tree_map` function more and
+more flexible.  So the next step---combining the tree transformer with
+tree that is ready to accept any `int -> int` function and produce the
updated tree.

updated tree.

-\tree (. (. (f2) (f3))(. (f5) (.(f7)(f11))))
-<pre>
-\f    .
-  ____|____
-  |       |
-  .       .
-__|__   __|__
-|   |   |   |
-f2  f3  f5  .
-          __|___
-          |    |
-          f7  f11
-</pre>
+       fun e ->    .
+              _____|____
+              |        |
+              .        .
+            __|___   __|___
+            |    |   |    |
+           e 2  e 3  e 5  .
+                        __|___
+                        |    |
+                       e 7  e 11

That is, we want to transform the ordinary tree `t1` (of type `int

That is, we want to transform the ordinary tree `t1` (of type `int
-tree`) into a reader object of type `(int->int)-> int tree`: something
-that, when you apply it to an `int->int` function returns an `int
-tree` in which each leaf `x` has been replaced with `(f x)`.
-
-With previous readers, we always knew which kind of environment to
-expect: either an assignment function (the original calculator
-simulation), a world (the intensionality monad), an integer (the
-enough for now to expect that our reader will expect a function of
-type `int->int`.
-
-<pre>
-type 'a reader = (int->int) -> 'a;;  (* mnemonic: e for environment *)
-</pre>
-
-It's easy to figure out how to turn an `int` into an `int reader`:
-
-<pre>
-let int2int_reader (x:'a): 'b reader = fun (op:'a -> 'b) -> op x;;
-int2int_reader 2 (fun i -> i + i);;
-- : int = 4
-</pre>
-
-But what do we do when the integers are scattered over the leaves of a
-tree?  A binary tree is not the kind of thing that we can apply a
-function of type `int->int` to.
-
-<pre>
-  match t with Leaf x -> reader_bind (f x) (fun x' -> reader_unit (Leaf x'))
-             | Node (l, r) -> reader_bind (treemonadizer f l) (fun x ->
-</pre>
+tree`) into a reader monadic object of type `(int -> int) -> int
+tree`: something that, when you apply it to an `int -> int` function
+`e` returns an `int tree` in which each leaf `i` has been replaced
+with `e i`.
+
+[Application note: this kind of reader object could provide a model
+for Kaplan's characters.  It turns an ordinary tree into one that
+expects contextual information (here, the `e`) that can be
+used to compute the content of indexicals embedded arbitrarily deeply
+in the tree.]
+
+which kind of environment to expect: either an assignment function, as
+in the original calculator simulation; a world, as in the
+monad; etc.  In the present case, we expect that our "environment"
+will be some function of type `int -> int`. "Looking up" some `int` in
+the environment will return us the `int` that comes out the other side
+of that function.
+
+       type 'a reader = (int -> int) -> 'a;;
+       let reader_unit (a : 'a) : 'a reader = fun _ -> a;;
+         fun e -> f (u e) e;;
+
+It would be a simple matter to turn an *integer* into an `int reader`:
+
+         fun (a : int) ->
+           fun (modifier : int -> int) -> modifier a;;
+       asker 2 (fun i -> i + i);;
+       - : int = 4
+
+`asker a` is a monadic box that waits for an an environment (here, the argument `modifier`) and returns what that environment maps `a` to.
+
+How do we do the analagous transformation when our `int`s are scattered over the leaves of a tree? How do we turn an `int tree` into a reader?
+A tree is not the kind of thing that we can apply a
+function of type `int -> int` to.
+
+But we can do this:
+
+       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
+           match t with
+           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
+           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->

This function says: give me a function `f` that knows how to turn

This function says: give me a function `f` that knows how to turn
-something of type `'a` into an `'b reader`, and I'll show you how to
-turn an `'a tree` into an `'a tree reader`.  In more fanciful terms,
-the `treemonadizer` function builds plumbing that connects all of the
-leaves of a tree into one connected monadic network; it threads the
-
-<pre>
-- : int tree =
-Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
-</pre>
+something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to, such as `asker` or `reader_unit`---and I'll show you how to
+turn an `'a tree` into an `'b tree reader`.  That is, if you show me how to do this:
+
+                     ------------
+         1     --->  |    1     |
+                     ------------
+
+then I'll give you back the ability to do this:
+
+                     ____________
+         .           |    .     |
+       __|___  --->  |  __|___  |
+       |    |        |  |    |  |
+       1    2        |  1    2  |
+                     ------------
+
+And how will that boxed tree behave? Whatever actions you perform on it will be transmitted down to corresponding operations on its leaves. For instance, our `int reader` expects an `int -> int` environment. If supplying environment `e` to our `int reader` doubles the contained `int`:
+
+                     ------------
+         1     --->  |    1     |  applied to e  ~~>  2
+                     ------------
+
+Then we can expect that supplying it to our `int tree reader` will double all the leaves:
+
+                     ____________
+         .           |    .     |                      .
+       __|___  --->  |  __|___  | applied to e  ~~>  __|___
+       |    |        |  |    |  |                    |    |
+       1    2        |  1    2  |                    2    4
+                     ------------
+
+In more fanciful terms, the `tree_monadize` function builds plumbing that connects all of the leaves of a tree into one connected monadic network; it threads the
+
+       - : int tree =
+       Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))

Here, our environment is the doubling function (`fun i -> i + i`).  If

Here, our environment is the doubling function (`fun i -> i + i`).  If
-int2int_reader t1`) to a different `int->int` function---say, the
+asker t1`) to a different `int -> int` function---say, the
squaring function, `fun i -> i * i`---we get an entirely different
result:

squaring function, `fun i -> i * i`---we get an entirely different
result:

-<pre>
-- : int tree =
-Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
-</pre>
+       - : int tree =
+       Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))

-Now that we have a tree transducer that accepts a monad as a
+Now that we have a tree transformer that accepts a *reader* monad as a
parameter, we can see what it would take to swap in a different monad.
parameter, we can see what it would take to swap in a different monad.
-For instance, we can use a state monad to count the number of nodes in
+
+For instance, we can use a State monad to count the number of leaves in
the tree.

the tree.

-<pre>
-type 'a state = int -> 'a * int;;
-let state_unit x i = (x, i+.5);;
-let state_bind u f i = let (a, i') = u i in f a (i'+.5);;
-</pre>
+       type 'a state = int -> 'a * int;;
+       let state_unit a = fun s -> (a, s);;
+       let state_bind u f = fun s -> let (a, s') = u s in f a s';;

-Gratifyingly, we can use the `treemonadizer` function without any
+Gratifyingly, we can use the `tree_monadize` function without any
modification whatsoever, except for replacing the (parametric) type
modification whatsoever, except for replacing the (parametric) type
-
-<pre>
-let rec treemonadizer (f:'a -> 'b state) (t:'a tree):('b tree) state =
-  match t with Leaf x -> state_bind (f x) (fun x' -> state_unit (Leaf x'))
-             | Node (l, r) -> state_bind (treemonadizer f l) (fun x ->
-                                state_bind (treemonadizer f r) (fun y ->
-                                  state_unit (Node (x, y))));;
-</pre>
-
-Then we can count the number of nodes in the tree:
-
-<pre>
-- : int tree * int =
-(Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 13)
-
-    .
- ___|___
- |     |
- .     .
-_|__  _|__
-|  |  |  |
-2  3  5  .
-        _|__
-        |  |
-        7  11
-</pre>
-
-Notice that we've counted each internal node twice---it's a good
-exercise to adjust the code to count each node once.
+`'b reader` with `'b state`, and substituting in the appropriate unit and bind:
+
+       let rec tree_monadize (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
+           match t with
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f l) (fun l' ->
+                              state_bind (tree_monadize f r) (fun r' ->
+                                state_unit (Node (l', r'))));;
+
+Then we can count the number of leaves in the tree:
+
+       # let incrementer = fun a ->
+           fun s -> (a, s+1);;
+
+       # tree_monadize incrementer t1 0;;
+       - : int tree * int =
+       (Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 5)
+
+               .
+            ___|___
+            |     |
+            .     .
+        (  _|__  _|__     ,   5 )
+           |  |  |  |
+           2  3  5  .
+                   _|__
+                   |  |
+                   7  11
+
+Note that the value returned is a pair consisting of a tree and an
+integer, 5, which represents the count of the leaves in the tree.
+
+Why does this work? Because the operation `incrementer`
+takes an argument `a` and wraps it in an State monadic box that
+increments the store and leaves behind a wrapped `a`. When we give that same operations to our
+`tree_monadize` function, it then wraps an `int tree` in a box, one
+that does the same store-incrementing for each of its leaves.
+
+We can use the state monad to annotate leaves with a number
+corresponding to that leave's ordinal position.  When we do so, we
+reveal the order in which the monadic tree forces evaluation:
+
+       # tree_monadize (fun a -> fun s -> ((a,s+1), s+1)) t1 0;;
+       - : int tree * int =
+         (Node
+           (Node (Leaf (2, 1), Leaf (3, 2)),
+            Node
+             (Leaf (5, 3),
+              Node (Leaf (7, 4), Leaf (11, 5)))),
+         5)
+
+The key thing to notice is that instead of just wrapping `a` in the
+monadic box, we wrap a pair of `a` and the current store.
+
+Reversing the annotation order requires reversing the order of the `state_bind`
+operations.  It's not obvious that this will type correctly, so think
+it through:
+
+       let rec tree_monadize_rev (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
+         match t with
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f r) (fun r' ->     (* R first *)
+                              state_bind (tree_monadize f l) (fun l'->    (* Then L  *)
+                                state_unit (Node (l', r'))));;
+
+       # tree_monadize_rev (fun a -> fun s -> ((a,s+1), s+1)) t1 0;;
+       - : int tree * int =
+         (Node
+           (Node (Leaf (2, 5), Leaf (3, 4)),
+            Node
+             (Leaf (5, 3),
+              Node (Leaf (7, 2), Leaf (11, 1)))),
+         5)
+
+Later, we will talk more about controlling the order in which nodes are visited.

One more revealing example before getting down to business: replacing

One more revealing example before getting down to business: replacing
-`state` everywhere in `treemonadizer` with `list` gives us
+`state` everywhere in `tree_monadize` with `list` lets us do:
+
+       # let decider i = if i = 2 then [20; 21] else [i];;
+       - : int tree List_monad.m =
+       [
+         Node (Node (Leaf 20, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)));
+         Node (Node (Leaf 21, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))
+       ]

-<pre>
-# treemonadizer (fun x -> [ [x; square x] ]) t1;;
-- : int list tree list =
-[Node
-  (Node (Leaf [2; 4], Leaf [3; 9]),
-   Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))]
-</pre>

Unlike the previous cases, instead of turning a tree into a function

Unlike the previous cases, instead of turning a tree into a function
-from some input to a result, this transformer replaces each `int` with
-a list of `int`'s.
+from some input to a result, this monadized tree gives us back a list of trees,
+one for each choice of `int`s for its leaves.

Now for the main point.  What if we wanted to convert a tree to a list

Now for the main point.  What if we wanted to convert a tree to a list
-of leaves?
-
-<pre>
-type ('a, 'r) continuation = ('a -> 'r) -> 'r;;
-let continuation_unit x c = c x;;
-let continuation_bind u f c = u (fun a -> f a c);;
-
-let rec treemonadizer (f:'a -> ('b, 'r) continuation) (t:'a tree):(('b tree), 'r) continuation =
-  match t with Leaf x -> continuation_bind (f x) (fun x' -> continuation_unit (Leaf x'))
-             | Node (l, r) -> continuation_bind (treemonadizer f l) (fun x ->
-                                continuation_bind (treemonadizer f r) (fun y ->
-                                  continuation_unit (Node (x, y))));;
-</pre>
-
-We use the continuation monad described above, and insert the
-`continuation` type in the appropriate place in the `treemonadizer` code.
-We then compute:
-
-<pre>
-# treemonadizer (fun a c -> a :: (c a)) t1 (fun t -> []);;
-- : int list = [2; 3; 5; 7; 11]
-</pre>
-
-We have found a way of collapsing a tree into a list of its leaves.
-
-The continuation monad is amazingly flexible; we can use it to
+of leaves?
+
+       type ('r,'a) continuation = ('a -> 'r) -> 'r;;
+       let continuation_unit a = fun k -> k a;;
+       let continuation_bind u f = fun k -> u (fun a -> f a k);;
+
+       let rec tree_monadize (f : 'a -> ('r,'b) continuation) (t : 'a tree) : ('r,'b tree) continuation =
+           match t with
+           | Leaf a -> continuation_bind (f a) (fun b -> continuation_unit (Leaf b))
+           | Node (l, r) -> continuation_bind (tree_monadize f l) (fun l' ->
+                              continuation_bind (tree_monadize f r) (fun r' ->
+                                continuation_unit (Node (l', r'))));;
+
+We use the Continuation monad described above, and insert the
+`continuation` type in the appropriate place in the `tree_monadize` code. Then if we give the `tree_monadize` function an operation that converts `int`s into `'b`-wrapping Continuation monads, it will give us back a way to turn `int tree`s into corresponding `'b tree`-wrapping Continuation monads.
+
+So for example, we compute:
+
+       # tree_monadize (fun a k -> a :: k ()) t1 (fun _ -> []);;
+       - : int list = [2; 3; 5; 7; 11]
+
+We have found a way of collapsing a tree into a list of its
+leaves. Can you trace how this is working? Think first about what the
+operation `fun a k -> a :: k a` does when you apply it to a
+plain `int`, and the continuation `fun _ -> []`. Then given what we've
+a -> fun k -> a :: k a)` to do?
+
+Soon we'll return to the same-fringe problem.  Since the
+simple but inefficient way to solve it is to map each tree to a list
+of its leaves, this transformation is on the path to a more efficient
+solution.  We'll just have to figure out how to postpone computing the
+tail of the list until it's needed...
+
+The Continuation monad is amazingly flexible; we can use it to
simulate some of the computations performed above.  To see how, first
simulate some of the computations performed above.  To see how, first
-note that an interestingly uninteresting thing happens if we use the
-continuation unit as our first argument to `treemonadizer`, and then
+note that an interestingly uninteresting thing happens if we use
+`continuation_unit` as our first argument to `tree_monadize`, and then
apply the result to the identity function:

apply the result to the identity function:

-<pre>
-# treemonadizer continuation_unit t1 (fun x -> x);;
-- : int tree =
-Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))
-</pre>
+       # tree_monadize continuation_unit t1 (fun t -> t);;
+       - : int tree =
+       Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))

That is, nothing happens.  But we can begin to substitute more

That is, nothing happens.  But we can begin to substitute more
-interesting functions for the first argument of `treemonadizer`:
-
-<pre>
-(* Simulating the tree reader: distributing a operation over the leaves *)
-# treemonadizer (fun a c -> c (square a)) t1 (fun x -> x);;
-- : int tree =
-Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
+interesting functions for the first argument of `tree_monadize`:

-(* Simulating the int list tree list *)
-# treemonadizer (fun a c -> c [a; square a]) t1 (fun x -> x);;
-- : int list tree =
-Node
- (Node (Leaf [2; 4], Leaf [3; 9]),
-  Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))
+       (* Simulating the tree reader: distributing a operation over the leaves *)
+       # tree_monadize (fun a -> fun k -> k (square a)) t1 (fun t -> t);;
+       - : int tree =
+       Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))

-(* Counting leaves *)
-# treemonadizer (fun a c -> 1 + c a) t1 (fun x -> 0);;
-- : int = 5
-</pre>
+       (* Counting leaves *)
+       # tree_monadize (fun a -> fun k -> 1 + k a) t1 (fun t -> 0);;
+       - : int = 5
+
+It's not immediately obvious to us how to simulate the List monadization of the tree using this technique.
+
+We could simulate the tree annotating example by setting the relevant
+type to `(store -> 'result, 'a) continuation`.
+
+Andre Filinsky has proposed that the continuation monad is
+
+If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml).
+
+The idea of using continuations to characterize natural language meaning
+------------------------------------------------------------------------
+
+We might a philosopher or a linguist be interested in continuations,
+especially if efficiency of computation is usually not an issue?
+Well, the application of continuations to the same-fringe problem
+shows that continuations can manage order of evaluation in a
+well-controlled manner.  In a series of papers, one of us (Barker) and
+Ken Shan have argued that a number of phenomena in natural langauge
+semantics are sensitive to the order of evaluation.  We can't
+reproduce all of the intricate arguments here, but we can give a sense
+of how the analyses use continuations to achieve an analysis of
+natural language meaning.
+
+**Quantification and default quantifier scope construal**.
+
+We saw in the copy-string example ("abSd") and in the same-fringe example that
+local properties of a structure (whether a character is `'S'` or not, which
+integer occurs at some leaf position) can control global properties of
+the computation (whether the preceeding string is copied or not,
+whether the computation halts or proceeds).  Local control of
+surrounding context is a reasonable description of in-situ
+quantification.
+
+    (1) John saw everyone yesterday.
+
+This sentence means (roughly)
+
+    forall x . yesterday(saw x) john
+
+That is, the quantifier *everyone* contributes a variable in the
+direct object position, and a universal quantifier that takes scope
+over the whole sentence.  If we have a lexical meaning function like
+the following:
+
+       let lex (s:string) k = match s with
+         | "everyone" -> Node (Leaf "forall x", k "x")
+         | "someone" -> Node (Leaf "exists y", k "y")
+         | _ -> k s;;
+
+Then we can crudely approximate quantification as follows:
+
+       # let sentence1 = Node (Leaf "John",
+                                                 Node (Node (Leaf "saw",
+                                                                         Leaf "everyone"),
+                                                               Leaf "yesterday"));;
+
+       # tree_monadize lex sentence1 (fun x -> x);;
+       - : string tree =
+       Node
+        (Leaf "forall x",
+         Node (Leaf "John", Node (Node (Leaf "saw", Leaf "x"), Leaf "yesterday")))
+
+In order to see the effects of evaluation order,
+observe what happens when we combine two quantifiers in the same
+sentence:
+
+       # let sentence2 = Node (Leaf "everyone", Node (Leaf "saw", Leaf "someone"));;
+       # tree_monadize lex sentence2 (fun x -> x);;
+       - : string tree =
+       Node
+        (Leaf "forall x",
+         Node (Leaf "exists y", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
+
+The universal takes scope over the existential.  If, however, we
+inverse scope:
+
+       # tree_monadize_rev lex sentence2 (fun x -> x);;
+       - : string tree =
+       Node
+        (Leaf "exists y",
+         Node (Leaf "forall x", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
+
+There are many crucially important details about quantification that
+are being simplified here, and the continuation treatment used here is not
+scalable for a number of reasons.  Nevertheless, it will serve to give
+an idea of how continuations can provide insight into the behavior of
+quantifiers.

-We could simulate the tree state example too, but it would require
-generalizing the type of the continuation monad to

-    type ('a -> 'b -> 'c) continuation = ('a -> 'b) -> 'c;;
-
----------------------
-
-Of course, by now you may have realized that we have discovered a new
-
-<pre>
-type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
-let tree_unit (x:'a) = Leaf x;;
-let rec tree_bind (u:'a tree) (f:'a -> 'b tree):'b tree =
-  match u with Leaf x -> f x
-             | Node (l, r) -> Node ((tree_bind l f), (tree_bind r f));;
-</pre>
+==============
+
+Of course, by now you may have realized that we are working with a new
+so are trees.  Here is the type constructor, unit, and bind:
+
+       type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
+       let tree_unit (a: 'a) : 'a tree = Leaf a;;
+       let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
+           match u with
+           | Leaf a -> f a
+           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;

For once, let's check the Monad laws.  The left identity law is easy:

For once, let's check the Monad laws.  The left identity law is easy:

-    Left identity: bind (unit a) f = bind (Leaf a) f = fa
+    Left identity: bind (unit a) f = bind (Leaf a) f = f a

To check the other two laws, we need to make the following
observation: it is easy to prove based on `tree_bind` by a simple
induction on the structure of the first argument that the tree
resulting from `bind u f` is a tree with the same strucure as `u`,

To check the other two laws, we need to make the following
observation: it is easy to prove based on `tree_bind` by a simple
induction on the structure of the first argument that the tree
resulting from `bind u f` is a tree with the same strucure as `u`,
-except that each leaf `a` has been replaced with `fa`:
-
-\tree (. (fa1) (. (. (. (fa2)(fa3)) (fa4)) (fa5)))
-<pre>
-                .                         .
-              __|__                     __|__
-              |   |                     |   |
-              a1  .                    fa1  .
-                 _|__                     __|__
-                 |  |                     |   |
-                 .  a5                    .  fa5
-   bind         _|__       f   =        __|__
-                |  |                    |   |
-                .  a4                   .  fa4
-              __|__                   __|___
-              |   |                   |    |
-              a2  a3                 fa2  fa3
-</pre>
+except that each leaf `a` has been replaced with the tree returned by `f a`:
+
+                       .                         .
+                     __|__                     __|__
+                     |   |                    /\   |
+                     a1  .                   f a1  .
+                        _|__                     __|__
+                        |  |                     |   /\
+                        .  a5                    .  f a5
+          bind         _|__       f   =        __|__
+                       |  |                    |   /\
+                       .  a4                   .  f a4
+                     __|__                   __|___
+                     |   |                  /\    /\
+                     a2  a3                f a2  f a3

Given this equivalence, the right identity law

Given this equivalence, the right identity law

-    Right identity: bind u unit = u
+       Right identity: bind u unit = u

falls out once we realize that

falls out once we realize that

-    bind (Leaf a) unit = unit a = Leaf a
+       bind (Leaf a) unit = unit a = Leaf a

As for the associative law,

As for the associative law,

-    Associativity: bind (bind u f) g = bind u (\a. bind (fa) g)
+       Associativity: bind (bind u f) g = bind u (\a. bind (f a) g)

we'll give an example that will show how an inductive proof would
proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then

we'll give an example that will show how an inductive proof would
proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then

-\tree (. (. (. (. (a1)(a2)))))
-\tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))  ))
-<pre>
-                                           .
-                                       ____|____
-          .               .            |       |
-bind    __|__   f  =    __|_    =      .       .
-        |   |           |   |        __|__   __|__
-        a1  a2         fa1 fa2       |   |   |   |
-                                     a1  a1  a1  a1
-</pre>
+                                                  .
+                                              ____|____
+                 .               .            |       |
+       bind    __|__   f  =    __|_    =      .       .
+               |   |           |   |        __|__   __|__
+               a1  a2        f a1 f a2      |   |   |   |
+                                            a1  a1  a1  a1

Now when we bind this tree to `g`, we get

Now when we bind this tree to `g`, we get

-<pre>
-           .
-       ____|____
-       |       |
-       .       .
-     __|__   __|__
-     |   |   |   |
-    ga1 ga1 ga1 ga1
-</pre>
+                   .
+              _____|______
+              |          |
+              .          .
+            __|__      __|__
+            |   |      |   |
+          g a1 g a1  g a1 g a1

At this point, it should be easy to convince yourself that
using the recipe on the right hand side of the associative law will

At this point, it should be easy to convince yourself that
using the recipe on the right hand side of the associative law will
-built the exact same final tree.
+build the exact same final tree.

So binary trees are a monad.

called a

So binary trees are a monad.