add Unreliable Guide OCaml Modules
[lambda.git] / manipulating_trees_with_monads.mdwn
diff --git a/manipulating_trees_with_monads.mdwn b/manipulating_trees_with_monads.mdwn
deleted file mode 100644 (file)
index 16bbd38..0000000
+++ /dev/null
@@ -1,702 +0,0 @@
-[[!toc]]
-
-Manipulating trees with monads
-------------------------------
-
-This topic develops an idea based on a suggestion of Ken Shan's.
-We'll build a series of functions that operate on trees, doing various
-things, including updating leaves with a Reader monad, counting nodes
-with a State monad, replacing leaves with a List monad, and converting
-a tree into a list of leaves with a Continuation monad.  It will turn
-out that the continuation monad can simulate the behavior of each of
-the other monads.
-
-From an engineering standpoint, we'll build a tree transformer that
-deals in monads.  We can modify the behavior of the system by swapping
-one monad for another.  We've already seen how adding a monad can add
-a layer of funtionality without disturbing the underlying system, for
-instance, in the way that the Reader monad allowed us to add a layer
-of intensionality to an extensional grammar, but we have not yet seen
-the utility of replacing one monad with other.
-
-First, we'll be needing a lot of trees for the remainder of the
-course.  Here again is a type constructor for leaf-labeled, binary trees:
-
-    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree);;
-
-[How would you adjust the type constructor to allow for labels on the
-internal nodes?]
-
-We'll be using trees where the nodes are integers, e.g.,
-
-
-       let t1 = Node (Node (Leaf 2, Leaf 3),
-                      Node (Leaf 5, Node (Leaf 7,
-                                           Leaf 11)))
-           .
-        ___|___
-        |     |
-        .     .
-       _|_   _|__
-       |  |  |  |
-       2  3  5  .
-               _|__
-               |  |
-               7  11
-
-Our first task will be to replace each leaf with its double:
-
-       let rec tree_map (leaf_modifier : 'a -> 'b) (t : 'a tree) : 'b tree =
-         match t with
-           | Leaf i -> Leaf (leaf_modifier i)
-           | Node (l, r) -> Node (tree_map leaf_modifier l,
-                                  tree_map leaf_modifier r);;
-
-`tree_map` takes a function that transforms old leaves into new leaves,
-and maps that function over all the leaves in the tree, leaving the
-structure of the tree unchanged.  For instance:
-
-       let double i = i + i;;
-       tree_map double t1;;
-       - : int tree =
-       Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
-       
-           .
-        ___|____
-        |      |
-        .      .
-       _|__  __|__
-       |  |  |   |
-       4  6  10  .
-               __|___
-               |    |
-               14   22
-
-We could have built the doubling operation right into the `tree_map`
-code.  However, because we've made what to do to each leaf a
-parameter, we can decide to do something else to the leaves without
-needing to rewrite `tree_map`.  For instance, we can easily square
-each leaf instead by supplying the appropriate `int -> int` operation
-in place of `double`:
-
-       let square i = i * i;;
-       tree_map square t1;;
-       - : int tree =
-       Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
-
-Note that what `tree_map` does is take some unchanging contextual
-information---what to do to each leaf---and supplies that information
-to each subpart of the computation.  In other words, `tree_map` has the
-behavior of a Reader monad.  Let's make that explicit.
-
-In general, we're on a journey of making our `tree_map` function more and
-more flexible.  So the next step---combining the tree transformer with
-a Reader monad---is to have the `tree_map` function return a (monadized)
-tree that is ready to accept any `int -> int` function and produce the
-updated tree.
-
-       \f      .
-          _____|____
-          |        |
-          .        .
-        __|___   __|___
-        |    |   |    |
-       f 2  f 3  f 5  .
-                    __|___
-                    |    |
-                   f 7  f 11
-
-That is, we want to transform the ordinary tree `t1` (of type `int
-tree`) into a reader monadic object of type `(int -> int) -> int
-tree`: something that, when you apply it to an `int -> int` function
-`f` returns an `int tree` in which each leaf `i` has been replaced
-with `f i`.
-
-[Application note: this kind of reader object could provide a model
-for Kaplan's characters.  It turns an ordinary tree into one that
-expects contextual information (here, the `λ f`) that can be
-used to compute the content of indexicals embedded arbitrarily deeply
-in the tree.]
-
-With our previous applications of the Reader monad, we always knew
-which kind of environment to expect: either an assignment function, as
-in the original calculator simulation; a world, as in the
-intensionality monad; an individual, as in the Jacobson-inspired link
-monad; etc.  In the present case, we expect that our "environment"
-will be some function of type `int -> int`. "Looking up" some `int` in
-the environment will return us the `int` that comes out the other side
-of that function.
-
-       type 'a reader = (int -> int) -> 'a;;  (* mnemonic: e for environment *)
-       let reader_unit (a : 'a) : 'a reader = fun _ -> a;;
-       let reader_bind (u: 'a reader) (f : 'a -> 'b reader) : 'b reader = fun e -> f (u e) e;;
-
-It would be a simple matter to turn an *integer* into an `int reader`:
-
-       let int_readerize : int -> int reader = fun (a : int) -> fun (modifier : int -> int) -> modifier a;;
-       int_readerize 2 (fun i -> i + i);;
-       - : int = 4
-
-But how do we do the analagous transformation when our `int`s are scattered over the leaves of a tree? How do we turn an `int tree` into a reader?
-A tree is not the kind of thing that we can apply a
-function of type `int -> int` to.
-
-But we can do this:
-
-       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
-           match t with
-           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
-           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->
-                              reader_bind (tree_monadize f r) (fun r' ->
-                                reader_unit (Node (l', r'))));;
-
-This function says: give me a function `f` that knows how to turn
-something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to---and I'll show you how to
-turn an `'a tree` into an `'b tree reader`.  That is, if you show me how to do this:
-
-                     ------------
-         1     --->  |    1     |
-                     ------------
-
-then I'll give you back the ability to do this:
-
-                     ____________
-         .           |    .     |
-       __|___  --->  |  __|___  |
-       |    |        |  |    |  |
-       1    2        |  1    2  |
-                     ------------
-
-And how will that boxed tree behave? Whatever actions you perform on it will be transmitted down to corresponding operations on its leaves. For instance, our `int reader` expects an `int -> int` environment. If supplying environment `e` to our `int reader` doubles the contained `int`:
-
-                     ------------
-         1     --->  |    1     |  applied to e  ~~>  2
-                     ------------
-
-Then we can expect that supplying it to our `int tree reader` will double all the leaves:
-
-                     ____________
-         .           |    .     |                      .
-       __|___  --->  |  __|___  | applied to e  ~~>  __|___
-       |    |        |  |    |  |                    |    |
-       1    2        |  1    2  |                    2    4
-                     ------------
-
-In more fanciful terms, the `tree_monadize` function builds plumbing that connects all of the leaves of a tree into one connected monadic network; it threads the
-`'b reader` monad through the original tree's leaves.
-
-       # tree_monadize int_readerize t1 double;;
-       - : int tree =
-       Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
-
-Here, our environment is the doubling function (`fun i -> i + i`).  If
-we apply the very same `int tree reader` (namely, `tree_monadize
-int_readerize t1`) to a different `int -> int` function---say, the
-squaring function, `fun i -> i * i`---we get an entirely different
-result:
-
-       # tree_monadize int_readerize t1 square;;
-       - : int tree =
-       Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
-
-Now that we have a tree transformer that accepts a *reader* monad as a
-parameter, we can see what it would take to swap in a different monad.
-
-For instance, we can use a State monad to count the number of leaves in
-the tree.
-
-       type 'a state = int -> 'a * int;;
-       let state_unit a = fun s -> (a, s);;
-       let state_bind u f = fun s -> let (a, s') = u s in f a s';;
-
-Gratifyingly, we can use the `tree_monadize` function without any
-modification whatsoever, except for replacing the (parametric) type
-`'b reader` with `'b state`, and substituting in the appropriate unit and bind:
-
-       let rec tree_monadize (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
-           match t with
-           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
-           | Node (l, r) -> state_bind (tree_monadize f l) (fun l' ->
-                              state_bind (tree_monadize f r) (fun r' ->
-                                state_unit (Node (l', r'))));;
-
-Then we can count the number of leaves in the tree:
-
-       # tree_monadize (fun a -> fun s -> (a, s+1)) t1 0;;
-       - : int tree * int =
-       (Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 5)
-       
-           .
-        ___|___
-        |     |
-        .     .
-       _|__  _|__         , 5
-       |  |  |  |
-       2  3  5  .
-               _|__
-               |  |
-               7  11
-
-Note that the value returned is a pair consisting of a tree and an
-integer, 5, which represents the count of the leaves in the tree.
-
-Why does this work? Because the operation `fun a -> fun s -> (a, s+1)`
-takes an `int` and wraps it in an `int state` monadic box that
-increments the state. When we give that same operations to our
-`tree_monadize` function, it then wraps an `int tree` in a box, one
-that does the same state-incrementing for each of its leaves.
-
-We can use the state monad to replace leaves with a number
-corresponding to that leave's ordinal position.  When we do so, we
-reveal the order in which the monadic tree forces evaluation:
-
-        # tree_monadize (fun a -> fun s -> (s+1, s+1)) t1 0;;
-        - : int tree * int =
-        (Node (Node (Leaf 1, Leaf 2), Node (Leaf 3, Node (Leaf 4, Leaf 5))), 5)
-
-The key thing to notice is that instead of copying `a` into the
-monadic box, we throw away the `a` and put a copy of the state in
-instead.
-
-Reversing the order requires reversing the order of the state_bind
-operations.  It's not obvious that this will type correctly, so think
-it through:
-
-       let rec tree_monadize_rev (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
-           match t with
-           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
-           | Node (l, r) -> state_bind (tree_monadize f r) (fun r' ->     (* R first *)
-                              state_bind (tree_monadize f l) (fun l'->    (* Then L  *)
-                                state_unit (Node (l', r'))));;
-
-        # tree_monadize_rev (fun a -> fun s -> (s+1, s+1)) t1 0;;
-        - : int tree * int =
-        (Node (Node (Leaf 5, Leaf 4), Node (Leaf 3, Node (Leaf 2, Leaf 1))), 5)
-
-We will need below to depend on controlling the order in which nodes
-are visited when we use the continuation monad to solve the
-same-fringe problem.
-
-One more revealing example before getting down to business: replacing
-`state` everywhere in `tree_monadize` with `list` gives us
-
-       # tree_monadize (fun i -> [ [i; square i] ]) t1;;
-       - : int list tree list =
-       [Node
-         (Node (Leaf [2; 4], Leaf [3; 9]),
-          Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))]
-
-Unlike the previous cases, instead of turning a tree into a function
-from some input to a result, this transformer replaces each `int` with
-a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun i -> [2*i; 3*i]`. Use small trees for your experiment.
-
-[Why is the argument to `tree_monadize` `int -> int list list` instead
-of `int -> int list`?  Well, as usual, the List monad bind operation
-will erase the outer list box, so if we want to replace the leaves
-with lists, we have to nest the replacement lists inside a disposable
-box.]
-
-Now for the main point.  What if we wanted to convert a tree to a list
-of leaves?
-
-       type ('a, 'r) continuation = ('a -> 'r) -> 'r;;
-       let continuation_unit a = fun k -> k a;;
-       let continuation_bind u f = fun k -> u (fun a -> f a k);;
-       
-       let rec tree_monadize (f : 'a -> ('b, 'r) continuation) (t : 'a tree) : ('b tree, 'r) continuation =
-           match t with
-           | Leaf a -> continuation_bind (f a) (fun b -> continuation_unit (Leaf b))
-           | Node (l, r) -> continuation_bind (tree_monadize f l) (fun l' ->
-                              continuation_bind (tree_monadize f r) (fun r' ->
-                                continuation_unit (Node (l', r'))));;
-
-We use the Continuation monad described above, and insert the
-`continuation` type in the appropriate place in the `tree_monadize` code. Then if we give the `tree_monadize` function an operation that converts `int`s into `'b`-wrapping Continuation monads, it will give us back a way to turn `int tree`s into corresponding `'b tree`-wrapping Continuation monads.
-
-So for example, we compute:
-
-       # tree_monadize (fun a -> fun k -> a :: k a) t1 (fun t -> []);;
-       - : int list = [2; 3; 5; 7; 11]
-
-We have found a way of collapsing a tree into a list of its
-leaves. Can you trace how this is working? Think first about what the
-operation `fun a -> fun k -> a :: k a` does when you apply it to a
-plain `int`, and the continuation `fun _ -> []`. Then given what we've
-said about `tree_monadize`, what should we expect `tree_monadize (fun
-a -> fun k -> a :: k a` to do?
-
-In a moment, we'll return to the same-fringe problem.  Since the
-simple but inefficient way to solve it is to map each tree to a list
-of its leaves, this transformation is on the path to a more efficient
-solution.  We'll just have to figure out how to postpone computing the
-tail of the list until its needed...
-
-The Continuation monad is amazingly flexible; we can use it to
-simulate some of the computations performed above.  To see how, first
-note that an interestingly uninteresting thing happens if we use
-`continuation_unit` as our first argument to `tree_monadize`, and then
-apply the result to the identity function:
-
-       # tree_monadize continuation_unit t1 (fun t -> t);;
-       - : int tree =
-       Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))
-
-That is, nothing happens.  But we can begin to substitute more
-interesting functions for the first argument of `tree_monadize`:
-
-       (* Simulating the tree reader: distributing a operation over the leaves *)
-       # tree_monadize (fun a -> fun k -> k (square a)) t1 (fun t -> t);;
-       - : int tree =
-       Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
-
-       (* Simulating the int list tree list *)
-       # tree_monadize (fun a -> fun k -> k [a; square a]) t1 (fun t -> t);;
-       - : int list tree =
-       Node
-        (Node (Leaf [2; 4], Leaf [3; 9]),
-         Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))
-
-       (* Counting leaves *)
-       # tree_monadize (fun a -> fun k -> 1 + k a) t1 (fun t -> 0);;
-       - : int = 5
-
-[To be fixed: exactly which kind of monad each of these computations simulates.]
-
-We could simulate the tree state example too by setting the relevant 
-type to `('a, 'state -> 'result) continuation`.
-In fact, Andre Filinsky has suggested that the continuation monad is
-able to simulate any other monad (Google for "mother of all monads").
-
-We would eventually want to generalize the continuation type to
-
-       type ('a, 'b, 'c) continuation = ('a -> 'b) -> 'c;;
-
-If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml).
-
-Using continuations to solve the same fringe problem
-----------------------------------------------------
-
-We've seen two solutions to the same fringe problem so far.  
-The problem, recall, is to take two trees and decide whether they have
-the same leaves in the same order.
-
-<pre>
- ta            tb          tc
- .             .           .
-_|__          _|__        _|__
-|  |          |  |        |  |
-1  .          .  3        1  .
-  _|__       _|__           _|__
-  |  |       |  |           |  |
-  2  3       1  2           3  2
-
-let ta = Node (Leaf 1, Node (Leaf 2, Leaf 3));;
-let tb = Node (Node (Leaf 1, Leaf 2), Leaf 3);;
-let tc = Node (Leaf 1, Node (Leaf 3, Leaf 2));;
-</pre>
-
-So `ta` and `tb` are different trees that have the same fringe, but
-`ta` and `tc` are not.
-
-The simplest solution is to map each tree to a list of its leaves,
-then compare the lists.  But because we will have computed the entire
-fringe before starting the comparison, if the fringes differ in an
-early position, we've wasted our time examining the rest of the trees.
-
-The second solution was to use tree zippers and mutable state to
-simulate coroutines (see [[coroutines and aborts]]).  In that
-solution, we pulled the zipper on the first tree until we found the
-next leaf, then stored the zipper structure in the mutable variable
-while we turned our attention to the other tree.  Because we stopped
-as soon as we find the first mismatched leaf, this solution does not
-have the flaw just mentioned of the solution that maps both trees to a
-list of leaves before beginning comparison.
-
-Since zippers are just continuations reified, we expect that the
-solution in terms of zippers can be reworked using continuations, and
-this is indeed the case.  Before we can arrive at a solution, however,
-we must define a data structure called a stream:
-
-    type 'a stream = End | Next of 'a * (unit -> 'a stream);;
-
-A stream is like a list in that it contains a series of objects (all
-of the same type, here, type `'a`).  The first object in the stream
-corresponds to the head of a list, which we pair with a stream
-representing the rest of a the list.  There is a special stream called
-`End` that represents a stream that contains no (more) elements,
-analogous to the empty list `[]`.  
-
-Actually, we pair each element not with a stream, but with a thunked
-stream, that is, a function from the unit type to streams.  The idea
-is that the next element in the stream is not computed until we forced
-the thunk by applying it to the unit:
-
-<pre>
-# let rec make_int_stream i = Next (i, fun () -> make_int_stream (i + 1));;
-val make_int_stream : int -> int stream = <fun>
-# let int_stream = make_int_stream 1;;
-val int_stream : int stream = Next (1, <fun>)         (* First element: 1 *)
-# match int_stream with Next (i, rest) -> rest;;      
-- : unit -> int stream = <fun>                        (* Rest: a thunk *)
-
-(* Force the thunk to compute the second element *)
-# (match int_stream with Next (i, rest) -> rest) ();;
-- : int stream = Next (2, <fun>)      
-</pre>
-
-You can think of `int_stream` as a functional object that provides
-access to an infinite sequence of integers, one at a time.  It's as if
-we had written `[1;2;...]` where `...` meant "continue indefinitely".
-
-So, with streams in hand, we need only rewrite our continuation tree
-monadizer so that instead of mapping trees to lists, it maps them to 
-streams.  Instead of 
-
-       # tree_monadize (fun a k -> a :: k a) t1 (fun t -> []);;
-       - : int list = [2; 3; 5; 7; 11]
-
-as above, we have 
-
-        # tree_monadize (fun i k -> Next (i, fun () -> k ())) t1 (fun _ -> End);;
-        - : int stream = Next (2, <fun>)
-
-We can see the first element in the stream, the first leaf (namely,
-2), but in order to see the next, we'll have to force a thunk.
-
-Then to complete the same-fringe function, we simply convert both
-trees into leaf-streams, then compare the streams element by element.
-The code is enitrely routine, but for the sake of completeness, here it is:
-
-<pre>
-let rec compare_streams stream1 stream2 =
-    match stream1, stream2 with 
-    | End, End -> true (* Done!  Fringes match. *)
-    | Next (next1, rest1), Next (next2, rest2) when next1 = next2 -> compare_streams (rest1 ()) (rest2 ())
-    | _ -> false;;
-
-let same_fringe t1 t2 =
-  let stream1 = tree_monadize (fun i k -> Next (i, fun () -> k ())) t1 (fun _ -> End) in 
-  let stream2 = tree_monadize (fun i k -> Next (i, fun () -> k ())) t2 (fun _ -> End) in 
-  compare_streams stream1 stream2;;
-</pre>
-
-Notice the forcing of the thunks in the recursive call to
-`compare_streams`.  So indeed:
-
-<pre>
-# same_fringe ta tb;;
-- : bool = true
-# same_fringe ta tc;;
-- : bool = false
-</pre>
-
-Now, this implementation is a bit silly, since in order to convert the
-trees to leaf streams, our tree_monadizer function has to visit every
-node in the tree.  But if we needed to compare each tree to a large
-set of other trees, we could arrange to monadize each tree only once,
-and then run compare_streams on the monadized trees.
-
-By the way, what if you have reason to believe that the fringes of
-your trees are more likely to differ near the right edge than the left
-edge?  If we reverse evaluation order in the tree_monadizer function,
-as shown above when we replaced leaves with their ordinal position,
-then the resulting streams would produce leaves from the right to the
-left.
-
-The idea of using continuations to characterize natural language meaning
-------------------------------------------------------------------------
-
-We might a philosopher or a linguist be interested in continuations,
-especially if efficiency of computation is usually not an issue?
-Well, the application of continuations to the same-fringe problem
-shows that continuations can manage order of evaluation in a
-well-controlled manner.  In a series of papers, one of us (Barker) and
-Ken Shan have argued that a number of phenomena in natural langauge
-semantics are sensitive to the order of evaluation.  We can't
-reproduce all of the intricate arguments here, but we can give a sense
-of how the analyses use continuations to achieve an analysis of
-natural language meaning.
-
-**Quantification and default quantifier scope construal**.  
-
-We saw in the copy-string example and in the same-fringe example that
-local properties of a tree (whether a character is `S` or not, which
-integer occurs at some leaf position) can control global properties of
-the computation (whether the preceeding string is copied or not,
-whether the computation halts or proceeds).  Local control of
-surrounding context is a reasonable description of in-situ
-quantification.
-
-    (1) John saw everyone yesterday.
-
-This sentence means (roughly)
-
-    forall x . yesterday(saw x) john
-
-That is, the quantifier *everyone* contributes a variable in the
-direct object position, and a universal quantifier that takes scope
-over the whole sentence.  If we have a lexical meaning function like
-the following:
-
-<pre>
-let lex (s:string) k = match s with 
-  | "everyone" -> Node (Leaf "forall x", k "x")
-  | "someone" -> Node (Leaf "exists y", k "y")
-  | _ -> k s;;
-
-let sentence1 = Node (Leaf "John", 
-                      Node (Node (Leaf "saw", 
-                                  Leaf "everyone"), 
-                            Leaf "yesterday"));;
-</pre>
-
-Then we can crudely approximate quantification as follows:
-
-<pre>
-# tree_monadize lex sentence1 (fun x -> x);;
-- : string tree =
-Node
- (Leaf "forall x",
-  Node (Leaf "John", Node (Node (Leaf "saw", Leaf "x"), Leaf "yesterday")))
-</pre>
-
-In order to see the effects of evaluation order, 
-observe what happens when we combine two quantifiers in the same
-sentence:
-
-<pre>
-# let sentence2 = Node (Leaf "everyone", Node (Leaf "saw", Leaf "someone"));;
-# tree_monadize lex sentence2 (fun x -> x);;
-- : string tree =
-Node
- (Leaf "forall x",
-  Node (Leaf "exists y", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
-</pre>
-
-The universal takes scope over the existential.  If, however, we
-replace the usual tree_monadizer with tree_monadizer_rev, we get
-inverse scope:
-
-<pre>
-# tree_monadize_rev lex sentence2 (fun x -> x);;
-- : string tree =
-Node
- (Leaf "exists y",
-  Node (Leaf "forall x", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
-</pre>
-
-There are many crucially important details about quantification that
-are being simplified here, and the continuation treatment here is not
-scalable for a number of reasons.  Nevertheless, it will serve to give
-an idea of how continuations can provide insight into the behavior of
-quantifiers.  
-
-
-The Binary Tree monad
----------------------
-
-Of course, by now you may have realized that we have discovered a new
-monad, the Binary Tree monad.  Just as mere lists are in fact a monad,
-so are trees.  Here is the type constructor, unit, and bind:
-
-       type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
-       let tree_unit (a: 'a) : 'a tree = Leaf a;;
-       let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
-           match u with
-           | Leaf a -> f a
-           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;
-
-For once, let's check the Monad laws.  The left identity law is easy:
-
-    Left identity: bind (unit a) f = bind (Leaf a) f = f a
-
-To check the other two laws, we need to make the following
-observation: it is easy to prove based on `tree_bind` by a simple
-induction on the structure of the first argument that the tree
-resulting from `bind u f` is a tree with the same strucure as `u`,
-except that each leaf `a` has been replaced with `f a`:
-
-                       .                         .
-                     __|__                     __|__
-                     |   |                     |   |
-                     a1  .                   f a1  .
-                        _|__                     __|__
-                        |  |                     |   |
-                        .  a5                    .  f a5
-          bind         _|__       f   =        __|__
-                       |  |                    |   |
-                       .  a4                   .  f a4
-                     __|__                   __|___
-                     |   |                   |    |
-                     a2  a3                f a2  f a3
-
-Given this equivalence, the right identity law
-
-       Right identity: bind u unit = u
-
-falls out once we realize that
-
-       bind (Leaf a) unit = unit a = Leaf a
-
-As for the associative law,
-
-       Associativity: bind (bind u f) g = bind u (\a. bind (f a) g)
-
-we'll give an example that will show how an inductive proof would
-proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then
-
-                                                  .
-                                              ____|____
-                 .               .            |       |
-       bind    __|__   f  =    __|_    =      .       .
-               |   |           |   |        __|__   __|__
-               a1  a2        f a1 f a2      |   |   |   |
-                                            a1  a1  a1  a1
-
-Now when we bind this tree to `g`, we get
-
-                   .
-              _____|______
-              |          |
-              .          .
-            __|__      __|__
-            |   |      |   |
-          g a1 g a1  g a1 g a1
-
-At this point, it should be easy to convince yourself that
-using the recipe on the right hand side of the associative law will
-built the exact same final tree.
-
-So binary trees are a monad.
-
-Haskell combines this monad with the Option monad to provide a monad
-called a
-[SearchTree](http://hackage.haskell.org/packages/archive/tree-monad/0.2.1/doc/html/src/Control-Monad-SearchTree.html#SearchTree)
-that is intended to represent non-deterministic computations as a tree.
-
-
-What's this have to do with tree\_mondadize?
---------------------------------------------
-
-So we've defined a Tree monad:
-
-       type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
-       let tree_unit (a: 'a) : 'a tree = Leaf a;;
-       let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
-           match u with
-           | Leaf a -> f a
-           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;
-
-What's this have to do with the `tree_monadize` functions we defined earlier?
-
-       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
-           match t with
-           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
-           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->
-                              reader_bind (tree_monadize f r) (fun r' ->
-                                reader_unit (Node (l', r'))));;
-
-... and so on for different monads?
-
-The answer is that each of those `tree_monadize` functions is adding a Tree monad *layer* to a pre-existing Reader (and so on) monad. We discuss that further here: [[Monad Transformers]].
-