tweak ass10
[lambda.git] / manipulating_trees_with_monads.mdwn
index 1609763..0d9e33d 100644 (file)
@@ -3,24 +3,26 @@
 Manipulating trees with monads
 ------------------------------
 
-This topic develops an idea based on a detailed suggestion of Ken
-Shan's.  We'll build a series of functions that operate on trees,
-doing various things, including replacing leaves, counting nodes, and
-converting a tree to a list of leaves.  The end result will be an
-application for continuations.
-
-From an engineering standpoint, we'll build a tree transformer that
+This topic develops an idea based on a suggestion of Ken Shan's.
+We'll build a series of functions that operate on trees, doing various
+things, including updating leaves with a Reader monad, counting nodes
+with a State monad, copying the tree with a List monad, and converting
+a tree into a list of leaves with a Continuation monad.  It will turn
+out that the continuation monad can simulate the behavior of each of
+the other monads.
+
+From an engineering standpoint, we'll build a tree machine that
 deals in monads.  We can modify the behavior of the system by swapping
 one monad for another.  We've already seen how adding a monad can add
 a layer of funtionality without disturbing the underlying system, for
 instance, in the way that the Reader monad allowed us to add a layer
-of intensionality to an extensional grammar, but we have not yet seen
+of intensionality to an extensional grammar. But we have not yet seen
 the utility of replacing one monad with other.
 
 First, we'll be needing a lot of trees for the remainder of the
 course.  Here again is a type constructor for leaf-labeled, binary trees:
 
-    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree)
+    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree);;
 
 [How would you adjust the type constructor to allow for labels on the
 internal nodes?]
@@ -30,7 +32,7 @@ We'll be using trees where the nodes are integers, e.g.,
 
        let t1 = Node (Node (Leaf 2, Leaf 3),
                       Node (Leaf 5, Node (Leaf 7,
-                                             Leaf 11)))
+                                           Leaf 11)))
            .
         ___|___
         |     |
@@ -50,9 +52,9 @@ Our first task will be to replace each leaf with its double:
            | Node (l, r) -> Node (tree_map leaf_modifier l,
                                   tree_map leaf_modifier r);;
 
-`tree_map` takes a function that transforms old leaves into new leaves,
-and maps that function over all the leaves in the tree, leaving the
-structure of the tree unchanged.  For instance:
+`tree_map` takes a tree and a function that transforms old leaves into
+new leaves, and maps that function over all the leaves in the tree,
+leaving the structure of the tree unchanged.  For instance:
 
        let double i = i + i;;
        tree_map double t1;;
@@ -71,14 +73,15 @@ structure of the tree unchanged.  For instance:
                14   22
 
 We could have built the doubling operation right into the `tree_map`
-code.  However, because we've left what to do to each leaf as a parameter, we can
-decide to do something else to the leaves without needing to rewrite
-`tree_map`.  For instance, we can easily square each leaf instead by
-supplying the appropriate `int -> int` operation in place of `double`:
+code.  However, because we've made what to do to each leaf a
+parameter, we can decide to do something else to the leaves without
+needing to rewrite `tree_map`.  For instance, we can easily square
+each leaf instead, by supplying the appropriate `int -> int` operation
+in place of `double`:
 
        let square i = i * i;;
        tree_map square t1;;
-       - : int tree =ppp
+       - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
 Note that what `tree_map` does is take some unchanging contextual
@@ -92,40 +95,54 @@ a Reader monad---is to have the `tree_map` function return a (monadized)
 tree that is ready to accept any `int -> int` function and produce the
 updated tree.
 
-\tree (. (. (f 2) (f 3)) (. (f 5) (. (f 7) (f 11))))
-
-       \f      .
-          _____|____
-          |        |
-          .        .
-        __|___   __|___
-        |    |   |    |
-       f 2  f 3  f 5  .
-                    __|___
-                    |    |
-                   f 7  f 11
+       fun e ->    .
+              _____|____
+              |        |
+              .        .
+            __|___   __|___
+            |    |   |    |
+           e 2  e 3  e 5  .
+                        __|___
+                        |    |
+                       e 7  e 11
 
 That is, we want to transform the ordinary tree `t1` (of type `int
-tree`) into a reader object of type `(int -> int) -> int tree`: something
-that, when you apply it to an `int -> int` function `f` returns an `int
-tree` in which each leaf `i` has been replaced with `f i`.
-
-With previous readers, we always knew which kind of environment to
-expect: either an assignment function (the original calculator
-simulation), a world (the intensionality monad), an integer (the
-Jacobson-inspired link monad), etc.  In the present case, we expect that our "environment" will be some function of type `int -> int`. "Looking up" some `int` in the environment will return us the `int` that comes out the other side of that function.
-
-       type 'a reader = (int -> int) -> 'a;;  (* mnemonic: e for environment *)
+tree`) into a reader monadic object of type `(int -> int) -> int
+tree`: something that, when you apply it to an `int -> int` function
+`e` returns an `int tree` in which each leaf `i` has been replaced
+with `e i`.
+
+[Application note: this kind of reader object could provide a model
+for Kaplan's characters.  It turns an ordinary tree into one that
+expects contextual information (here, the `e`) that can be
+used to compute the content of indexicals embedded arbitrarily deeply
+in the tree.]
+
+With our previous applications of the Reader monad, we always knew
+which kind of environment to expect: either an assignment function, as
+in the original calculator simulation; a world, as in the
+intensionality monad; an individual, as in the Jacobson-inspired link
+monad; etc.  In the present case, we expect that our "environment"
+will be some function of type `int -> int`. "Looking up" some `int` in
+the environment will return us the `int` that comes out the other side
+of that function.
+
+       type 'a reader = (int -> int) -> 'a;;
        let reader_unit (a : 'a) : 'a reader = fun _ -> a;;
-       let reader_bind (u: 'a reader) (f : 'a -> 'b reader) : 'b reader = fun e -> f (u e) e;;
+       let reader_bind (u: 'a reader) (f : 'a -> 'b reader) : 'b reader =
+         fun e -> f (u e) e;;
 
 It would be a simple matter to turn an *integer* into an `int reader`:
 
-       let int_readerize : int -> int reader = fun (a : int) -> fun (modifier : int -> int) -> modifier a;;
-       int_readerize 2 (fun i -> i + i);;
+       let asker : int -> int reader =
+         fun (a : int) ->
+           fun (modifier : int -> int) -> modifier a;;
+       asker 2 (fun i -> i + i);;
        - : int = 4
 
-But how do we do the analagous transformation when our `int`s are scattered over the leaves of a tree? How do we turn an `int tree` into a reader?
+`asker a` is a monadic box that waits for an an environment (here, the argument `modifier`) and returns what that environment maps `a` to.
+
+How do we do the analagous transformation when our `int`s are scattered over the leaves of a tree? How do we turn an `int tree` into a reader?
 A tree is not the kind of thing that we can apply a
 function of type `int -> int` to.
 
@@ -139,7 +156,7 @@ But we can do this:
                                 reader_unit (Node (l', r'))));;
 
 This function says: give me a function `f` that knows how to turn
-something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to---and I'll show you how to
+something of type `'a` into an `'b reader`---this is a function of the same type that you could bind an `'a reader` to, such as `asker` or `reader_unit`---and I'll show you how to
 turn an `'a tree` into an `'b tree reader`.  That is, if you show me how to do this:
 
                      ------------
@@ -173,17 +190,17 @@ Then we can expect that supplying it to our `int tree reader` will double all th
 In more fanciful terms, the `tree_monadize` function builds plumbing that connects all of the leaves of a tree into one connected monadic network; it threads the
 `'b reader` monad through the original tree's leaves.
 
-       # tree_monadize int_readerize t1 double;;
+       # tree_monadize asker t1 double;;
        - : int tree =
        Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
 
 Here, our environment is the doubling function (`fun i -> i + i`).  If
 we apply the very same `int tree reader` (namely, `tree_monadize
-int_readerize t1`) to a different `int -> int` function---say, the
+asker t1`) to a different `int -> int` function---say, the
 squaring function, `fun i -> i * i`---we get an entirely different
 result:
 
-       # tree_monadize int_readerize t1 square;;
+       # tree_monadize asker t1 square;;
        - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
@@ -210,50 +227,95 @@ modification whatsoever, except for replacing the (parametric) type
 
 Then we can count the number of leaves in the tree:
 
-       # tree_monadize (fun a -> fun s -> (a, s+1)) t1 0;;
+       # let incrementer = fun a ->
+           fun s -> (a, s+1);;
+       
+       # tree_monadize incrementer t1 0;;
        - : int tree * int =
        (Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 5)
        
-           .
-        ___|___
-        |     |
-        .     .
-       _|__  _|__
-       |  |  |  |
-       2  3  5  .
-               _|__
-               |  |
-               7  11
+               .
+            ___|___
+            |     |
+            .     .
+        (  _|__  _|__     ,   5 )
+           |  |  |  |
+           2  3  5  .
+                   _|__
+                   |  |
+                   7  11
+
+Note that the value returned is a pair consisting of a tree and an
+integer, 5, which represents the count of the leaves in the tree.
+
+Why does this work? Because the operation `incrementer`
+takes an argument `a` and wraps it in an State monadic box that
+increments the store and leaves behind a wrapped `a`. When we give that same operations to our
+`tree_monadize` function, it then wraps an `int tree` in a box, one
+that does the same store-incrementing for each of its leaves.
+
+We can use the state monad to annotate leaves with a number
+corresponding to that leave's ordinal position.  When we do so, we
+reveal the order in which the monadic tree forces evaluation:
+
+       # tree_monadize (fun a -> fun s -> ((a,s+1), s+1)) t1 0;;
+       - : int tree * int =
+         (Node
+           (Node (Leaf (2, 1), Leaf (3, 2)),
+            Node
+             (Leaf (5, 3),
+              Node (Leaf (7, 4), Leaf (11, 5)))),
+         5)
 
-Why does this work? Because the operation `fun a -> fun s -> (a, s+1)` takes an `int` and wraps it in an `int state` monadic box that increments the state. When we give that same operations to our `tree_monadize` function, it then wraps an `int tree` in a box, one that does the same state-incrementing for each of its leaves.
+The key thing to notice is that instead of just wrapping `a` in the
+monadic box, we wrap a pair of `a` and the current store.
 
-One more revealing example before getting down to business: replacing
-`state` everywhere in `tree_monadize` with `list` gives us
+Reversing the annotation order requires reversing the order of the `state_bind`
+operations.  It's not obvious that this will type correctly, so think
+it through:
+
+       let rec tree_monadize_rev (f : 'a -> 'b state) (t : 'a tree) : 'b tree state =
+         match t with
+           | Leaf a -> state_bind (f a) (fun b -> state_unit (Leaf b))
+           | Node (l, r) -> state_bind (tree_monadize f r) (fun r' ->     (* R first *)
+                              state_bind (tree_monadize f l) (fun l'->    (* Then L  *)
+                                state_unit (Node (l', r'))));;
+       
+       # tree_monadize_rev (fun a -> fun s -> ((a,s+1), s+1)) t1 0;;
+       - : int tree * int =
+         (Node
+           (Node (Leaf (2, 5), Leaf (3, 4)),
+            Node
+             (Leaf (5, 3),
+              Node (Leaf (7, 2), Leaf (11, 1)))),
+         5)
 
-       # tree_monadize (fun i -> [ [i; square i] ]) t1;;
-       - : int list tree list =
-       [Node
-         (Node (Leaf [2; 4], Leaf [3; 9]),
-          Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))]
+Later, we will talk more about controlling the order in which nodes are visited.
 
-Unlike the previous cases, instead of turning a tree into a function
-from some input to a result, this transformer replaces each `int` with
-a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment.
+One more revealing example before getting down to business: replacing
+`state` everywhere in `tree_monadize` with `list` lets us do:
 
+       # let decider i = if i = 2 then [20; 21] else [i];;
+       # tree_monadize decider t1;;
+       - : int tree List_monad.m =
+       [
+         Node (Node (Leaf 20, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)));
+         Node (Node (Leaf 21, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))
+       ]
 
-<!--
-FIXME: We don't make it clear why the fun has to be int -> int list list, instead of int -> int list
--->
 
+Unlike the previous cases, instead of turning a tree into a function
+from some input to a result, this monadized tree gives us back a list of trees,
+one for each choice of `int`s for its leaves.
 
 Now for the main point.  What if we wanted to convert a tree to a list
 of leaves?
 
-       type ('a, 'r) continuation = ('a -> 'r) -> 'r;;
+       type ('r,'a) continuation = ('a -> 'r) -> 'r;;
        let continuation_unit a = fun k -> k a;;
        let continuation_bind u f = fun k -> u (fun a -> f a k);;
        
-       let rec tree_monadize (f : 'a -> ('b, 'r) continuation) (t : 'a tree) : ('b tree, 'r) continuation =
+       let rec tree_monadize (f : 'a -> ('r,'b) continuation) (t : 'a tree) : ('r,'b tree) continuation =
            match t with
            | Leaf a -> continuation_bind (f a) (fun b -> continuation_unit (Leaf b))
            | Node (l, r) -> continuation_bind (tree_monadize f l) (fun l' ->
@@ -265,10 +327,21 @@ We use the Continuation monad described above, and insert the
 
 So for example, we compute:
 
-       # tree_monadize (fun a -> fun k -> a :: k a) t1 (fun t -> []);;
+       # tree_monadize (fun a k -> a :: k ()) t1 (fun _ -> []);;
        - : int list = [2; 3; 5; 7; 11]
 
-We have found a way of collapsing a tree into a list of its leaves. Can you trace how this is working? Think first about what the operation `fun a -> fun k -> a :: k a` does when you apply it to a plain `int`, and the continuation `fun _ -> []`. Then given what we've said about `tree_monadize`, what should we expect `tree_monadize (fun a -> fun k -> a :: k a` to do?
+We have found a way of collapsing a tree into a list of its
+leaves. Can you trace how this is working? Think first about what the
+operation `fun a k -> a :: k a` does when you apply it to a
+plain `int`, and the continuation `fun _ -> []`. Then given what we've
+said about `tree_monadize`, what should we expect `tree_monadize (fun
+a -> fun k -> a :: k a)` to do?
+
+Soon we'll return to the same-fringe problem.  Since the
+simple but inefficient way to solve it is to map each tree to a list
+of its leaves, this transformation is on the path to a more efficient
+solution.  We'll just have to figure out how to postpone computing the
+tail of the list until it's needed...
 
 The Continuation monad is amazingly flexible; we can use it to
 simulate some of the computations performed above.  To see how, first
@@ -288,30 +361,107 @@ interesting functions for the first argument of `tree_monadize`:
        - : int tree =
        Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
 
-       (* Simulating the int list tree list *)
-       # tree_monadize (fun a -> fun k -> k [a; square a]) t1 (fun t -> t);;
-       - : int list tree =
-       Node
-        (Node (Leaf [2; 4], Leaf [3; 9]),
-         Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))
-
        (* Counting leaves *)
        # tree_monadize (fun a -> fun k -> 1 + k a) t1 (fun t -> 0);;
        - : int = 5
 
-We could simulate the tree state example too, but it would require
-generalizing the type of the Continuation monad to
+It's not immediately obvious to us how to simulate the List monadization of the tree using this technique.
+
+We could simulate the tree annotating example by setting the relevant 
+type to `(store -> 'result, 'a) continuation`.
 
-       type ('a, 'b, 'c) continuation = ('a -> 'b) -> 'c;;
+Andre Filinsky has proposed that the continuation monad is
+able to simulate any other monad (Google for "mother of all monads").
 
 If you want to see how to parameterize the definition of the `tree_monadize` function, so that you don't have to keep rewriting it for each new monad, see [this code](/code/tree_monadize.ml).
 
+The idea of using continuations to characterize natural language meaning
+------------------------------------------------------------------------
+
+We might a philosopher or a linguist be interested in continuations,
+especially if efficiency of computation is usually not an issue?
+Well, the application of continuations to the same-fringe problem
+shows that continuations can manage order of evaluation in a
+well-controlled manner.  In a series of papers, one of us (Barker) and
+Ken Shan have argued that a number of phenomena in natural langauge
+semantics are sensitive to the order of evaluation.  We can't
+reproduce all of the intricate arguments here, but we can give a sense
+of how the analyses use continuations to achieve an analysis of
+natural language meaning.
+
+**Quantification and default quantifier scope construal**.  
+
+We saw in the copy-string example ("abSd") and in the same-fringe example that
+local properties of a structure (whether a character is `'S'` or not, which
+integer occurs at some leaf position) can control global properties of
+the computation (whether the preceeding string is copied or not,
+whether the computation halts or proceeds).  Local control of
+surrounding context is a reasonable description of in-situ
+quantification.
+
+    (1) John saw everyone yesterday.
+
+This sentence means (roughly)
+
+    forall x . yesterday(saw x) john
+
+That is, the quantifier *everyone* contributes a variable in the
+direct object position, and a universal quantifier that takes scope
+over the whole sentence.  If we have a lexical meaning function like
+the following:
+
+       let lex (s:string) k = match s with 
+         | "everyone" -> Node (Leaf "forall x", k "x")
+         | "someone" -> Node (Leaf "exists y", k "y")
+         | _ -> k s;;
+
+Then we can crudely approximate quantification as follows:
+
+       # let sentence1 = Node (Leaf "John", 
+                                                 Node (Node (Leaf "saw", 
+                                                                         Leaf "everyone"), 
+                                                               Leaf "yesterday"));;
+
+       # tree_monadize lex sentence1 (fun x -> x);;
+       - : string tree =
+       Node
+        (Leaf "forall x",
+         Node (Leaf "John", Node (Node (Leaf "saw", Leaf "x"), Leaf "yesterday")))
+
+In order to see the effects of evaluation order, 
+observe what happens when we combine two quantifiers in the same
+sentence:
+
+       # let sentence2 = Node (Leaf "everyone", Node (Leaf "saw", Leaf "someone"));;
+       # tree_monadize lex sentence2 (fun x -> x);;
+       - : string tree =
+       Node
+        (Leaf "forall x",
+         Node (Leaf "exists y", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
+
+The universal takes scope over the existential.  If, however, we
+replace the usual `tree_monadizer` with `tree_monadizer_rev`, we get
+inverse scope:
+
+       # tree_monadize_rev lex sentence2 (fun x -> x);;
+       - : string tree =
+       Node
+        (Leaf "exists y",
+         Node (Leaf "forall x", Node (Leaf "x", Node (Leaf "saw", Leaf "y"))))
+
+There are many crucially important details about quantification that
+are being simplified here, and the continuation treatment used here is not
+scalable for a number of reasons.  Nevertheless, it will serve to give
+an idea of how continuations can provide insight into the behavior of
+quantifiers.
 
-The Binary Tree monad
----------------------
 
-Of course, by now you may have realized that we have discovered a new
-monad, the Binary Tree monad:
+The Tree monad
+==============
+
+Of course, by now you may have realized that we are working with a new
+monad, the binary, leaf-labeled Tree monad.  Just as mere lists are in fact a monad,
+so are trees.  Here is the type constructor, unit, and bind:
 
        type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
        let tree_unit (a: 'a) : 'a tree = Leaf a;;
@@ -328,22 +478,20 @@ To check the other two laws, we need to make the following
 observation: it is easy to prove based on `tree_bind` by a simple
 induction on the structure of the first argument that the tree
 resulting from `bind u f` is a tree with the same strucure as `u`,
-except that each leaf `a` has been replaced with `f a`:
-
-\tree (. (f a1) (. (. (. (f a2) (f a3)) (f a4)) (f a5)))
+except that each leaf `a` has been replaced with the tree returned by `f a`:
 
                        .                         .
                      __|__                     __|__
-                     |   |                     |   |
+                     |   |                    /\   |
                      a1  .                   f a1  .
                         _|__                     __|__
-                        |  |                     |   |
+                        |  |                     |   /\
                         .  a5                    .  f a5
           bind         _|__       f   =        __|__
-                       |  |                    |   |
+                       |  |                    |   /\
                        .  a4                   .  f a4
                      __|__                   __|___
-                     |   |                   |    |
+                     |   |                  /\    /\
                      a2  a3                f a2  f a3
 
 Given this equivalence, the right identity law
@@ -361,9 +509,6 @@ As for the associative law,
 we'll give an example that will show how an inductive proof would
 proceed.  Let `f a = Node (Leaf a, Leaf a)`.  Then
 
-\tree (. (. (. (. (a1) (a2)))))
-\tree (. (. (. (. (a1) (a1)) (. (a1) (a1)))))
-
                                                   .
                                               ____|____
                  .               .            |       |
@@ -384,7 +529,7 @@ Now when we bind this tree to `g`, we get
 
 At this point, it should be easy to convince yourself that
 using the recipe on the right hand side of the associative law will
-built the exact same final tree.
+build the exact same final tree.
 
 So binary trees are a monad.
 
@@ -394,135 +539,8 @@ called a
 that is intended to represent non-deterministic computations as a tree.
 
 
-What's this have to do with tree\_mondadize?
+What's this have to do with tree\_monadize?
 --------------------------------------------
 
-So we've defined a Tree monad
-
-       type 'a tree = Leaf of 'a | Node of ('a tree) * ('a tree);;
-       let tree_unit (a: 'a) : 'a tree = Leaf a;;
-       let rec tree_bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
-           match u with
-           | Leaf a -> f a
-           | Node (l, r) -> Node (tree_bind l f, tree_bind r f);;
-
-What's this have to do with the `tree_monadize` functions we defined earlier?
-
-       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
-           match t with
-           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
-           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->
-                              reader_bind (tree_monadize f r) (fun r' ->
-                                reader_unit (Node (l', r'))));;
-
-... and so on for different monads?
-
-The answer is that each of those `tree_monadize` functions is adding a Tree monad *layer* to a pre-existing Reader (and so on) monad. So far, we've defined monads as single-layered things. (Though in the Groenendijk, Stokhoff, and Veltmann application, we had to figure out how to combine Reader, State, and Set monads in an ad-hoc way.) But in practice, one often wants to combine the abilities of several monads. Corresponding to each monad like Reader, there's a corresponding ReaderT **monad transformer**. That takes an existing monad M and adds a Reader monad layer to it. The way these are defined parallels the way the single-layer versions are defined. For example, here's the Reader monad:
-
-       (* monadic operations for the Reader monad *)
-
-       type 'a reader =
-               env -> 'a;;
-       let unit (a : 'a) : 'a reader =
-               fun e -> a;;
-       let bind (u: 'a reader) (f : 'a -> 'b reader) : 'b reader =
-               fun e -> (fun v -> f v e) (u e);;
-
-We've just beta-expanded the familiar `f (u e) e` into `(fun v -> f v e) (u e)` to factor out the parts where any Reader monad is being supplied as an argument to another function. Then if we want instead to add a Reader layer to some arbitrary other monad M, with its own M.unit and M.bind, here's how we do it:
-
-       (* monadic operations for the ReaderT monadic transformer *)
-
-       (* We're not giving valid OCaml code, but rather something
-        * that's conceptually easier to digest.
-        * How you really need to write this in OCaml is more circuitious...
-        * see http://lambda.jimpryor.net/code/tree_monadize.ml for some details. *)
-
-       type ('a, M) readerT =
-               env -> 'a M;;
-       (* this is just an 'a M reader; but that doesn't generalize *)
-
-       let unit (a : 'a) : ('a, M) readerT =
-               fun e -> M.unit a;;
-
-       let bind (u : ('a, M) readerT) (f : 'a -> ('b, M) readerT) : ('b, M) readerT =
-               fun e -> M.bind (u e) (fun v -> f v e);;
-
-Notice the key differences: where before we just returned `a`, now we return `M.unit a`. Where before we just supplied a value `u e` of type `'a reader` as an argument to a function, now we instead `M.bind` the `'a reader` to that function. Notice also the differences in the types.
-
-What is the relation between Reader and ReaderT? Well, suppose you started with the Identity monad:
-
-       type 'a identity = 'a;;
-       let unit (a : 'a) : 'a = a;;
-       let bind (u : 'a) (f : 'a -> 'b) : 'b = f u;;
-
-and you used the ReaderT transformer to add a Reader monad layer to the Identity monad. What do you suppose you would get?
-
-The relations between the State monad and the StateT monadic transformer are parallel:
-
-       (* monadic operations for the State monad *)
-
-       type 'a state =
-               store -> ('a * store);;
-
-       let unit (a : 'a) : 'a state =
-               fun s -> (a, s);;
-
-       let bind (u : 'a state) (f : 'a -> 'b state) : 'b state =
-               fun s -> (fun (a, s') -> f a s') (u s);;
-
-We've used `(fun (a, s') -> f a s') (u s)` instead of the more familiar `let (a, s') = u s in f a s'` in order to factor out the part where a value of type `'a state` is supplied as an argument to a function. Now StateT will be:
-
-       (* monadic operations for the StateT monadic transformer *)
-
-       type ('a, M) stateT =
-               store -> ('a * store) M;;
-       (* notice this is not an 'a M state *)
-
-       let unit (a : 'a) : ('a, M) stateT =
-               fun s -> M.unit (a, s);;
-
-       let bind (u : ('a, M) stateT) (f : 'a -> ('b, M) stateT) : ('b, M) stateT =
-               fun s -> M.bind (u s) (fun (a, s') -> f a s');;
-
-Do you see the pattern? Where ordinarily we'd return an `'a` value, now we instead return an `'a M` value. Where ordinarily we'd supply a `'a state` value as an argument to a function, now we instead `M.bind` it to that function.
-
-Okay, now let's do the same thing for our Tree monad.
-
-       (* monadic operations for the Tree monad *)
-
-       type 'a tree =
-               Leaf of 'a | Node of ('a tree) * ('a tree);;
-
-       let unit (a: 'a) : 'a tree =
-               Leaf a;;
-
-       let rec bind (u : 'a tree) (f : 'a -> 'b tree) : 'b tree =
-           match u with
-           | Leaf a -> f a
-           | Node (l, r) -> (fun l' r' -> Node (l', r')) (bind l f) (bind r f);;
-
-       (* monadic operations for the TreeT monadic transformer *)
-
-       type ('a, M) treeT =
-               'a tree M;;
-
-       let unit (a: 'a) : ('a, M) tree =
-               M.unit (Leaf a);;
-
-       let rec bind (u : ('a, M) tree) (f : 'a -> ('b, M) tree) : ('b, M) tree =
-           match u with
-           | Leaf a -> M.unit (f a)
-           | Node (l, r) -> M.bind (bind l f) (fun l' ->
-                                                       M.bind (bind r f) (fun r' ->
-                                                               M.unit (Node (l', r'));;
-
-Compare this definition of `bind` for the TreeT monadic transformer to our earlier definition of `tree_monadize`, specialized for the Reader monad:
-
-       let rec tree_monadize (f : 'a -> 'b reader) (t : 'a tree) : 'b tree reader =
-           match t with
-           | Leaf a -> reader_bind (f a) (fun b -> reader_unit (Leaf b))
-           | Node (l, r) -> reader_bind (tree_monadize f l) (fun l' ->
-                              reader_bind (tree_monadize f r) (fun r' ->
-                                reader_unit (Node (l', r'))));;
-
+Our different implementations of `tree_monadize` above were different *layerings* of the Tree monad with other monads (Reader, State, List, and Continuation). We'll explore that further here: [[Monad Transformers]].