exx
[lambda.git] / exercises / _assignment6.mdwn
index d1b3696..2e4f704 100644 (file)
@@ -1,4 +1,4 @@
-~/Dropbox/Lambda/wiki/exercises/# Assignment 6 (week 7)
+# Assignment 6 (week 7)
 
 ## Evaluation order in Combinatory Logic
 
@@ -24,5 +24,126 @@ recursive reduction function.)
 
 <!-- just add early no-op cases for Ka and Sab -->
 
-## Evaluation in the untyped lambda calculus
+## Evaluation in the untyped lambda calculus: substitution
 
+Once you grok reduction and evaluation order in Combinatory Logic,
+we're going to begin to construct an evaluator for a simple language
+that includes lambda abstraction.  We're going to work through the
+issues twice: once with a function that does substitution in the
+obvious way.  You'll see it's somewhat complicated.  The complications
+come from the need to worry about variable capture.  (Seeing these
+complications should give you an inkling of why we presented the
+evaluation order discussion using Combinatory Logic, since we don't
+need to worry about variables in CL.)  
+
+We're not going to ask you to write the entire program yourself.
+Instead, we're going to give you [[the complete program, minus a few
+little bits of glue|code/reduction_with_substitution.ml]].  What you need to do is
+understand how it all fits together.  When you do, you'll understand
+how to add the last little bits to make functioning program.  
+
+1. In the previous homework, you built a function that took an
+identifier and a lambda term and returned a boolean representing
+whether that identifier occured free inside of the term.  Your first
+task is to complete the `free_in` function, which has been crippled in
+the code base (look for lines that say `COMPLETE THIS LINE`).  Once
+you have your function working, you should be able to run queries such
+as this:
+
+    # free_in "x" (App (Abstract ("x", Var "x"), Var "x"));;
+    - : bool = true
+
+2. Once you get the `free_in` function working, you'll need to
+complete the `substitute` function.  You'll see a new wrinkle on
+OCaml's pattern-matching construction: `| PATTERN when x = 2 ->
+RESULT`.  This means that a match with PATTERN is only triggered if
+the boolean condition in the `when` clause evaluates to true.
+Sample target:
+
+    # substitute (App (Abstract ("x", ((App (Abstract ("x", Var "x"), Var "y")))), Constant (Num 3))) "y" (Constant (Num 4));;
+    - : lambdaTerm = App (Abstract ("x", App (Abstract ("x", Var "x"), Constant (Num 4))), Constant (Num 3))
+
+3. Once you have completed the previous two problems, you'll have a
+complete evaluation program. Here's a simple sanity check for when you
+get it working:
+
+    # reduce (App (Abstract ("x", Var "x"), Constant (Num 3)));;
+    - : lambdaTerm = Constant (Num 3)
+
+4. What kind of evaluation strategy does this evaluator use?  In
+particular, what are the answers to the three questions about
+evaluation strategy as given in the discussion of [[evaluation
+strategies|topics/week3_evaluation_order]] as Q1, Q2, and Q3?
+
+## Evaluation in the untyped calculus: environments
+
+Ok, the previous strategy sucked: tracking free and bound variables,
+computing fresh variables, it's all super complicated.
+
+Here's a better strategy. Instead of keeping all of the information
+about which variables have been bound or are still free implicitly
+inside of the terms, we'll keep score.  This will require us to carry
+around a scorecard, which we will call an "environment".  This is a
+familiar strategy, since it amounts to evaluating expressions relative
+to an assignment function.  The difference between the assignment
+function approach above, and this approach, is one huge step towards
+monads.
+
+5. First, you need to get [[the evaluation
+code|code/reduction_with_environments.ml]]  working.  Look in the
+code for places where you see "not yet implemented", and get enough of
+those places working that you can use the code to evaluate terms.
+
+6. A snag: what happens when we want to replace a variable with a term
+that itself contains a free variable?  
+
+<pre>
+term          environment
+------------- -------------
+(\w.(\y.y)w)2 []
+(\y.y)w       [w->2]
+y             [w->2, y->w]
+</pre>
+
+In the first step, we bind `w` to the argument `2`.  In the second
+step, we bind `y` to the argument `w`.  In the third step, we would
+like to replace `y` with whatever its current value is according to
+our scorecard.  On the simple-minded view, we would replace it with
+`w`.  But that's not the right result, because `w` itself has been
+mapped onto 2.
+
+## Monads
+
+Mappables (functors), MapNables (applicatives functors), and Monads
+(composables) are ways of lifting computations from unboxed types into
+boxed types.  Here, a "boxed type" is a type function with one missing
+piece, which we can think of as a function from a type to a type.
+Call this type function M, and let P, Q, R, and S be variables over types.
+
+Recall that a monad requires a singleton function 1:P-> MP, and a
+composition operator >=>: (P->MQ) -> (Q->MR) -> (R->MS) that obey the
+following laws:
+
+    1 >=> k = k
+    k >=> 1 = k 
+    j >=> (k >=> l) = (j >=> k) >=> l
+
+For instance, the identity monad has the identity function I for 1
+and ordinary function composition (o) for >=>.  It is easy to prove
+that the laws hold for any expressions j, k, and l whose types are
+suitable for 1 and >=>:
+
+    1 >=> k == I o k == \p. I (kp) ~~> \p.kp ~~> k
+    k >=> 1 == k o I == \p. k (Ip) ~~> \p.kp ~~> k
+
+    (j >=> k) >=> l == (\p.j(kp)) o l == \q.(\p.j(kp))(lq) ~~> \q.j(k(lq))
+    j >=> (k >=> l) == j o (k o l) == j o \p.k(lp) == \q.j(\p.k(lp)q) ~~> \q.j(k(lq))
+
+1. On a number of occasions, we've used the Option type to make our
+conceptual world neat and tidy (for instance, think of the discussion
+of Kaplan's Plexy).  It turns out that there is a natural monad for
+the Option type.  Borrowing the notation of OCaml, let's say that "`'a
+option`" is the type of a boxed `'a`, whatever type `'a` is.  Then the
+obvious singleton for the Option monad is \p.Just p.  What is the
+composition operator >=> for the Option monad?  Show your answer is
+correct by proving that it obeys the monad laws.