post tree questions
[lambda.git] / exercises / _assignment4.mdwn
index fd9816d..8bbeffe 100644 (file)
@@ -44,7 +44,7 @@ For instance, `fact 0 ~~> 1`, `fact 1 ~~> 1`, `fact 2 ~~> 2`, `fact 3 ~~>
 
         let fact = ... in
 
-        fac 4
+        fact 4
 
 6.  For this question, we want to implement **sets** of numbers in terms of lists of numbers, where we make sure as we construct those lists that they never contain a single number more than once. (It would be even more efficient if we made sure that the lists were always sorted, but we won't try to implement that refinement here.) To enforce the idea of modularity, let's suppose you don't know the details of how the lists are implemented. You just are given the functions defined below for them (but pretend you don't see the actual definitions). These define lists in terms of [[one of the new encodings discussed last week|/topics/week3_lists#v5-lists]].
 
@@ -75,7 +75,41 @@ For instance, `fact 0 ~~> 1`, `fact 1 ~~> 1`, `fact 2 ~~> 2`, `fact 3 ~~>
     Here are some tips for getting started. Use `drop_while`, `num_equal?`, and `empty?` to define a `mem?` function that returns `true` if number `x` is a member of a list of numbers `xs`, else returns `false`. Also use `take_while`, `drop_while`, `num_equal?`, `tail` and `append` to define a `without` function that returns a copy of a list of numbers `xs` that omits the first occurrence of a number `x`, if there be such. You may find these functions `mem?` and `without` useful in defining `set_cons` and `set_equal?`. Also, for `set_equal?`, you are probably going to want to define the function recursively... as now you know how to do.
 
 
-7.  Questions about trees.
+7.  Linguists often analyze natural language expressions into trees. We'll need trees in future weeks, and tree structures provide good opportunities for learning how to write recursive functions. Making use of our current resources, we might approximate trees as follows. Instead of words or syntactic categories, we'll have the nodes of the tree labeled with Church numbers. We'll think of a tree as a list in which each element is itself a tree. For simplicity, we'll adopt the convention that a tree of length 1 must contain a number as its only element.
+
+    Then we have the following representations:
+
+              .   
+             /|\  
+            / | \ 
+            1 2  3
+
+        [[1], [2], [3]]
+
+               .  
+              / \ 
+             /\  3
+            1  2  
+
+        [[[1], [2]], [3]]
+
+              .
+             / \
+            1  /\
+              2  3
+
+        [[1], [[2], [3]]]
+
+    Some limitations of this scheme: there is no easy way to label an inner, branching node (for example with a syntactic category like VP), and there is no way to represent a tree in which a mother node has a single daughter.
+
+    When processing a tree, you can test for whether the tree is a leaf node (that is, contains only a single number), by testing whether the length of the list is 1. This will be your base case for your recursive definitions that work on these trees.
+
+    Your assignment is to write a Lambda Calculus function that expects a tree, encoded in the way just described, as an argument, and returns the sum of its leaves as a result. So for all of the trees listed above, it should return `1 + 2 + 3`, namely `6`. You can use any Lambda Calculus implementation of lists you like.
+
+
+
+8.    The **fringe** of a leaf-labeled tree is the list of values at its leaves, ordered from left-to-right. For example, the fringe of all three trees displayed above is the same list, `[1, 2, 3]`. We are going to return to the question of how to tell whether trees have the same fringe several times this course. We'll discover more interesting and more efficient ways to do it as our conceptual toolboxes get fuller. For now, we're going to explore the straightforward strategy. Write a function that expects a tree as an argument, and returns the list which is its fringe. Next write a function that expects two trees as arguments, converts each of them into their fringes, and then determines whether the two lists so produced are equal. (Convert your `list_equal?` function from last week's homework into the Lambda Calculus for this last step.)
+
 
 
 ## Arithmetic infinity? ##
@@ -93,13 +127,13 @@ the successor function, multiplication is defined in terms of
 addition, and exponentiation is defined in terms of multiplication.
 
 
-8.  Find a fixed point `ξ` for the successor function.  Prove it's a fixed
+9.  Find a fixed point `ξ` for the successor function.  Prove it's a fixed
 point, i.e., demonstrate that `succ ξ <~~> ξ`.  
 
-    We've had surprising success embedding normal arithmetic in the lambda
-calculus, modeling the natural numbers, addition, multiplication, and
+    We've had surprising success embedding normal arithmetic in the Lambda
+Calculus, modeling the natural numbers, addition, multiplication, and
 so on.  But one thing that some versions of arithmetic supply is a
-notion of infinity, which we'll write as `inf`.  This object usually
+notion of infinity, which we'll write as `inf`.  This object sometimes
 satisfies the following constraints, for any finite natural number `n`:
 
         n + inf == inf
@@ -107,23 +141,22 @@ satisfies the following constraints, for any finite natural number `n`:
         n ^ inf == inf
         leq n inf == true
 
-    (Note, though, that with some notions of infinite numbers, operations like `+` and `*` are defined in such a way that `inf + n` is different from `n + inf`, and does exceed `inf`.)
+    (Note, though, that with *some* notions of infinite numbers, like [[!wikipedia ordinal numbers]], operations like `+` are defined in such a way that `inf + n` is different from `n + inf`, and does exceed `inf`; similarly for `*` and `^`. With other notions of infinite numbers, like the [[!wikipedia cardinal numbers]], even less familiar arithmetic operations are employed.)
 
-9. Prove that `add 1 ξ <~~> ξ`, where `ξ` is the fixed
-point you found in (1).  What about `add 2 ξ <~~> ξ`?  
+10. Prove that `add ξ 1 <~~> ξ`, where `ξ` is the fixed
+point you found in (1).  What about `add ξ 2 <~~> ξ`?  
 
 Comment: a fixed point for the successor function is an object such that it
 is unchanged after adding 1 to it.  It makes a certain amount of sense
 to use this object to model arithmetic infinity.  For instance,
 depending on implementation details, it might happen that `leq n ξ` is
 true for all (finite) natural numbers `n`.  However, the fixed point
-you found for `succ` may not be a fixed point for `mult n` or for
-`exp n`.
+you found for `succ` and `(+n)` (recall this is shorthand for `\x. add x n`) may not be a fixed point for `(*n)`, for example.
 
 
 ## Mutually-recursive functions ##
 
-10. (Challenging.) One way to define the function `even?` is to have it hand off
+11. (Challenging.) One way to define the function `even?` is to have it hand off
 part of the work to another function `odd?`:
 
         let even? = \x. (zero? x)
@@ -176,6 +209,6 @@ a *pair* of functions `h` and `g`, as follows:
 definitions of `even?` and `odd?`?
 
                                        
-11. (More challenging.) Using our derivation of `Y` from [[this week's notes|topics/week4_fixed_point_combinators#deriving-y]] as a model, construct a pair `Y1` and `Y2` that behave in the way described above.
+12. (More challenging.) Using our derivation of `Y` from [[this week's notes|topics/week4_fixed_point_combinators#deriving-y]] as a model, construct a pair `Y1` and `Y2` that behave in the way described above.
 
-    Here is one hint to get you started: remember that in the notes, we constructed a fixed point for `h` by evolving it into `H` and using `H H` as `h`'s fixed point. We suggested the thought exercise, how might you instead evolve `h` into some `T` and then use `T T T` as `h`'s fixed point. Try solving this problem first. It may help give you the insights you need to define a `Y1` and `Y2`.
+    Here is one hint to get you started: remember that in the notes, we constructed a fixed point for `h` by evolving it into `H` and using `H H` as `h`'s fixed point. We suggested the thought exercise, how might you instead evolve `h` into some `T` and then use `T T T` as `h`'s fixed point. Try solving this problem first. It may help give you the insights you need to define a `Y1` and `Y2`. [[Here are some hints|assignment4_hint]].