fromlists... -> fromlistzippers...
[lambda.git] / coroutines_and_aborts.mdwn
index 8cca9e3..272765a 100644 (file)
@@ -70,7 +70,7 @@ Here is how you can extract the components of a labeled record:
 
        match test with
        | {height = h; weight = w; char_tester = test} ->
-               (* go on to use h, w, and test ... *)
+         (* go on to use h, w, and test ... *)
 
 Anyway, using record types, we might define the tree zipper interface like so:
 
@@ -173,15 +173,15 @@ You might think of it like this: `make_fringe_enumerator` returns a little subpr
 Using these fringe enumerators, we can write our `same_fringe` function like this:
 
        let same_fringe (t1 : 'a tree) (t2 : 'a tree) : bool =
-               let next1 = make_fringe_enumerator t1
-               in let next2 = make_fringe_enumerator t2
-               in let rec loop () : bool =
-                       match next1 (), next2 () with
-                       | Some a, Some b when a = b -> loop ()
-                       | None, None -> true
-                       | _ -> false
-               in loop ()
-               ;;
+           let next1 = make_fringe_enumerator t1
+           in let next2 = make_fringe_enumerator t2
+           in let rec loop () : bool =
+               match next1 (), next2 () with
+               | Some a, Some b when a = b -> loop ()
+               | None, None -> true
+               | _ -> false
+           in loop ()
+           ;;
 
 The auxiliary `loop` function will keep calling itself recursively until a difference in the fringes has manifested itself---either because one fringe is exhausted before the other, or because the next leaves in the two fringes have different labels. If we get to the end of both fringes at the same time (`next1 (), next2 ()` matches the pattern `None, None`) then we've established that the trees do have the same fringe.
 
@@ -189,20 +189,20 @@ The technique illustrated here with our fringe enumerators is a powerful and imp
 
 With cooperative threads, one typically yields control to the thread, and then back again to the main program, multiple times. Here's the pattern in which that happens in our `same_fringe` function:
 
-       main program            next1 thread            next2 thread
-       ------------            ------------            ------------
+       main program        next1 thread        next2 thread
+       ------------        ------------        ------------
        start next1
-       (paused)                        starting
-       (paused)                        calculate first leaf
-       (paused)                        <--- return it
-       start next2                     (paused)                        starting
-       (paused)                        (paused)                        calculate first leaf
-       (paused)                        (paused)                        <-- return it
-       compare leaves          (paused)                        (paused)
-       call loop again         (paused)                        (paused)
-       call next1 again        (paused)                        (paused)
-       (paused)                        calculate next leaf     (paused)
-       (paused)                        <-- return it           (paused)
+       (paused)            starting
+       (paused)            calculate first leaf
+       (paused)            <--- return it
+       start next2         (paused)            starting
+       (paused)            (paused)            calculate first leaf
+       (paused)            (paused)            <-- return it
+       compare leaves      (paused)            (paused)
+       call loop again     (paused)            (paused)
+       call next1 again    (paused)            (paused)
+       (paused)            calculate next leaf (paused)
+       (paused)            <-- return it       (paused)
        ... and so on ...
 
 If you want to read more about these kinds of threads, here are some links:
@@ -267,7 +267,7 @@ While writing OCaml code, you've probably come across errors. In fact, you've pr
        # let lst = [1; 2] in
          "a" :: lst;;
        Error: This expression has type int list
-                  but an expression was expected of type string list
+              but an expression was expected of type string list
 
 But you may also have encountered other kinds of error, that arise while your program is running. For example:
 
@@ -281,9 +281,9 @@ These "Exceptions" are **run-time errors**. OCaml will automatically detect some
        let nth l n =
          if n < 0 then invalid_arg "List.nth" else
          let rec nth_aux l n =
-               match l with
-               | [] -> failwith "nth"
-               | a::l -> if n = 0 then a else nth_aux l (n-1)
+           match l with
+           | [] -> failwith "nth"
+           | a::l -> if n = 0 then a else nth_aux l (n-1)
          in nth_aux l n
 
 Notice the two clauses `invalid_arg "List.nth"` and `failwith "nth"`. These are two helper functions which are shorthand for:
@@ -319,7 +319,7 @@ the effect is for the program to immediately stop. That's not exactly true. You
                (if x = 1 then 10
                else if x = 2 then raise (Failure "two")
                else raise (Failure "three")
-                       ) + 100
+               ) + 100
            with Failure "two" -> 20
            ;;
        val foo : int -> int = <fun>
@@ -365,7 +365,7 @@ When an exception is raised, it percolates up through the code that called it, u
        # try
            try
                (raise (Failure "blah")
-                       ) + 100
+               ) + 100
            with Failure "fooey" -> 10
          with Failure "blah" -> 20;;
        - : int = 20
@@ -375,7 +375,7 @@ The matching `try ... with ...` block need not *lexically surround* the site whe
        # let foo b x =
            try
                (b x
-                       ) + 100
+               ) + 100
            with Failure "blah" -> 20
        in let bar x =
            raise (Failure "blah")
@@ -390,7 +390,7 @@ OK, now this exception-handling apparatus does exemplify the second execution pa
            try begin
                (if x = 1 then 10
                else abort 20
-                       ) + 100
+               ) + 100
            end
            ;;
 
@@ -427,7 +427,7 @@ A more general way to think about these snapshots is to think of the code we're
            try begin
                (if x = 1 then 10
                else abort 20
-                       ) + 100
+               ) + 100
            end
        in (foo 2) + 1;;
 
@@ -458,19 +458,19 @@ What would a "snapshot of the code outside the box" look like? Well, let's rearr
 and we can think of the code starting with `let foo_result = ...` as a function, with the box being its parameter, like this:
 
        fun box ->
-               let foo_result = box
-               in (foo_result) + 1000
+           let foo_result = box
+           in (foo_result) + 1000
 
 That function is our "snapshot". Normally what happens is that code *inside* the box delivers up a value, and that value gets supplied as an argument to the snapshot-function just described. That is, our code is essentially working like this:
 
        let x = 2
        in let snapshot = fun box ->
-               let foo_result = box
-               in (foo_result) + 1000
+           let foo_result = box
+           in (foo_result) + 1000
        in let value =
-               (if x = 1 then 10
-               else ... (* we'll come back to this part *)
-               ) + 100
+           (if x = 1 then 10
+           else ... (* we'll come back to this part *)
+           ) + 100
        in shapshot value;;
 
 But now how should the `abort 20` part, that we ellided here, work? What should happen when we try to evaluate that?
@@ -479,38 +479,38 @@ Well, that's when we use the snapshot code in an unusual way. If we encounter an
 
        let x = 2
        in let snapshot = fun box ->
-               let foo_result = box
-               in (foo_result) + 1000
+           let foo_result = box
+           in (foo_result) + 1000
        in let value =
-               (if x = 1 then 10
-               else snapshot 20
-               ) + 100
+           (if x = 1 then 10
+           else snapshot 20
+           ) + 100
        in shapshot value;;
 
 Except that isn't quite right, yet---in this fragment, after the `snapshot 20` code is finished, we'd pick up again inside `let value = (...) + 100 in snapshot value`. That's not what we want. We don't want to pick up again there. We want instead to do this:
 
        let x = 2
        in let snapshot = fun box ->
-               let foo_result = box
-               in (foo_result) + 1000
+           let foo_result = box
+           in (foo_result) + 1000
        in let value =
-               (if x = 1 then 10
-               else snapshot 20 THEN STOP
-               ) + 100
+           (if x = 1 then 10
+           else snapshot 20 THEN STOP
+           ) + 100
        in shapshot value;;
 
 We can get that by some further rearranging of the code:
 
        let x = 2
        in let snapshot = fun box ->
-               let foo_result = box
-               in (foo_result) + 1000
+           let foo_result = box
+           in (foo_result) + 1000
        in let continue_normally = fun from_value ->
-               let value = from_value + 100
-               in snapshot value
-       in 
-               if x = 1 then continue_normally 10
-               else snapshot 20;;
+           let value = from_value + 100
+           in snapshot value
+       in
+           if x = 1 then continue_normally 10
+           else snapshot 20;;
 
 And this is indeed what is happening, at a fundamental level, when you use an expression like `abort 20`.
 
@@ -519,14 +519,14 @@ And this is indeed what is happening, at a fundamental level, when you use an ex
 # open Delimcc;;
 # let reset body = let p = new_prompt () in push_prompt p (body p);;
 # let test_cps x =
-         let snapshot = fun box ->
-                 let foo_result = box
-                 in (foo_result) + 1000
-         in let continue_normally = fun from_value ->
-                 let value = from_value + 100
-                 in snapshot value
-         in if x = 1 then continue_normally 10
-         else snapshot 20;;
+      let snapshot = fun box ->
+          let foo_result = box
+          in (foo_result) + 1000
+      in let continue_normally = fun from_value ->
+          let value = from_value + 100
+          in snapshot value
+      in if x = 1 then continue_normally 10
+      else snapshot 20;;
 
        let foo x =
        +===try begin================+
@@ -537,11 +537,11 @@ And this is indeed what is happening, at a fundamental level, when you use an ex
        in (foo 2) + 1000;;
 
 # let test_shift x =
-       let foo x = reset(fun p () ->
-               (shift p (fun k ->
-                       if x = 1 then k 10 else 20)
-               ) + 100)
-       in foo z + 1000;;
+    let foo x = reset(fun p () ->
+        (shift p (fun k ->
+            if x = 1 then k 10 else 20)
+        ) + 100)
+    in foo z + 1000;;
 
 # test_cps 1;;
 - : int = 1110
@@ -584,7 +584,7 @@ When working with continuations, it's easiest in the first place to write them o
            try begin
                (if x = 1 then 10
                else abort 20
-                       ) + 100
+               ) + 100
            end
        in (foo 2) + 1;;
 
@@ -592,14 +592,14 @@ into this:
 
        let x = 2
        in let snapshot = fun box ->
-               let foo_result = box
-               in (foo_result) + 1000
+           let foo_result = box
+           in (foo_result) + 1000
        in let continue_normally = fun from_value ->
-               let value = from_value + 100
-               in snapshot value
-       in 
-               if x = 1 then continue_normally 10
-               else snapshot 20;;
+           let value = from_value + 100
+           in snapshot value
+       in
+           if x = 1 then continue_normally 10
+           else snapshot 20;;
 
 Code written in the latter form is said to be written in **explicit continuation-passing style** or CPS. Later we'll talk about algorithms that mechanically convert an entire program into CPS.